SGN-52406 Models of Gene Networks, 3 cr

Lisätiedot

The course is lectured every year.

Course webpage: https://www.cs.tut.fi/~sanchesr/SGN-52406/index.htm
Suitable for postgraduate studies.

Vastuuhenkilö

Andre Sanches Ribeiro

Opetus

Toteutuskerta Periodi Vastuuhenkilö Suoritusvaatimukset
SGN-52406 2016-01 1 Andre Sanches Ribeiro
a) Exercises (Must complete 50% of exercise points. 80% provides a bonus). b) Final exam (50% of the final grade). c) Project work (50% of the final grade).

Osaamistavoitteet

From this course the student will know how to do exact stochastic simulations, delayed stochastic simulations, and how to create models of delayed stochastic gene regulatory networks. Students will become familiar with detailed models and experimental results related to single gene expression and its underlying mechanisms. Also, the student will be introduced to basic concepts of cell type and cell differentiation and learn the latest modeling techniques in these topics. After the course, the student will be able to: 1) Identify and define techniques used in modeling gene expression and gene regulatory networks. Demonstrate the accuracy of the models. 2) Interpret data generated from the models, classify strengths and weaknesses of the modeling strategies, summarize results and explain the connection between models and native gene networks. 3) Implement models, apply them to mimic experiments, and calculate statistical features associated to gene expression in cells. Apply the knowledge to construct models of engineered genetic circuits. 4) Analyze results of simulations of models of gene networks. Compare different methodologies for verifying a hypothesis or measuring a variable using such models. 5) Compare and appraise different computational models, and interpret conclusions using different models. 6) Create and develop models of gene networks from experimental data, and use the models to address questions on the dynamics of gene networks and processes regulated by these networks, e.g., cell differentiation.

Sisältö

Sisältö Ydinsisältö Täydentävä tietämys Erityistietämys
1. The Stochastic Simulation Algorithm and The Delayed Stochastic Simulation Algorithm     
2. Modeling single gene expression with the delayed Stochastic Simulation Algorithm     
3. A stochastic delayed modeling strategy of Gene Regulatory Networks: models of noisy attractors as cell types, and ergodic sets     
4. Stochastic models of cell differentiation     
5. Examples and applications of the modeling strategies     

Ohjeita opiskelijalle osaamisen tasojen saavuttamiseksi

Requirements: a) Exercises (Must complete 50% of exercise points. 80% provides a bonus). b) Final exam (50% of the final grade). c) Project work (50% of the final grade).

Arvosteluasteikko:

Numerical evaluation scale (0-5)

Oppimateriaali

Tyyppi Nimi Tekijä ISBN URL Lisätiedot Tenttimateriaali
Journal   A General Modeling Strategy for Gene Regulatory Networks with Stochastic Dynamics   Andre S. Ribeiro, R. Zhu, S. A. Kauffman       Andre S. Ribeiro, R. Zhu, S. A. Kauffman, A General Modeling Strategy for Gene Regulatory Networks with Stochastic Dynamics, Journal of Computational Biology, Vol. 13 (9), 1630-1639, 2006.   Yes   
Journal   A general method for numerically simulating the stochastic time evolution of coupled chemical reactions   Gillespie, D. T.       Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 1976, 403-434.   No   
Journal   Exact stochastic simulation of coupled chemical reactions   Gillespie, D. T.       Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 1977, 2340-2361   Yes   
Journal   Modeling and Simulation of Genetic Regulatory Systems: A Literature Review   Hidde de Jong       Hidde de Jong, Modeling and Simulation of Genetic Regulatory Systems: A Literature Review, Journal of Computational Biology. 2002, 9(1): 67-103.   No   
Journal   Noisy Attractors and Ergodic Sets in Models of Genetic Regulatory Networks   Andre S. Ribeiro, S. A. Kauffman       Andre S. Ribeiro, S. A. Kauffman, Noisy Attractors and Ergodic Sets in Models of Genetic Regulatory Networks, J. of Theoretical Bio., 247, Issue 4, 2007, Pgs 743-755   No   
Journal   SGNSim a stochastic gene network simulator   Andre S. Ribeiro and Jason Lloyd-Price       Bioinformatics   No   
Journal   Studying genetic regulatory networks at the molecular level: Delayed reaction stochastic models   Rui Zhu, Andre S. Ribeiro, Dennis Salahub, and Stuart A. Kauffman       Rui Zhu, Andre S. Ribeiro, Dennis Salahub, and Stuart A. Kauffman, "Studying genetic regulatory networks at the molecular level: Delayed reaction stochastic models", Journal of Theoretical Biology, 246(4):725-45, 2007.   Yes   
Other literature   A Model of Genetic Networks with Delayed Stochastic Dynamics   Andre S. Ribeiro       Andre S. Ribeiro, A Model of Genetic Networks with Delayed Stochastic Dynamics, in Analysis of Microarray Data: Network based Approaches, Wiley, Matthias Dehmer and Frank Emmert-Streib (Editors), 2007.   Yes   

Tietoa esitietovaatimuksista
Basic knowledge of programming in MatLab (recommended: SGN-84006 Introduction to Scientific Computing with Matlab) or C++. Basic knowledge of biology/systems biology.



Vastaavuudet

Opintojakso Vastaa opintojaksoa  Selite 
SGN-52406 Models of Gene Networks, 3 cr SGN-6236 Modeling Techniques for Stochastic Gene Regulatory Networks, 3 cr  
SGN-52406 Models of Gene Networks, 3 cr BMT-52406 Models of Gene Networks, 3 cr  

Päivittäjä: Värri Alpo, 08.04.2016