SGN-53007 Computational Diagnostics, 5 cr

Implementation SGN-53007 2016-01

Description

After completing the course, the student gained a basic understanding of the definition and the meaning of computational diagnostics and its utility for biomedical research. Case studies will be discussed illustrating the interplay between computational and statistical methods that are applied to large-scale and high-dimensional data sets from genomic and genetic experiments. Moreover, the student will learn how to practically approach such problems by using the statistical programming language R. In general, the course teaches statistical thinking in the context of biomedical problems, i.e., the adaptation of machine learning methods in a problem specific manner.

Lessons

Period 1
Methods of instruction Luento, Tentti, Harjoitukset
Person responsible Frank Emmert-Streib

Assessment scale

Numerical evaluation scale (0-5)

Requirements

To complete the course, the student is required to (all three requirements must be completed to pass the course): a) Execute the project work (20% of the final grade) b) Execute the weekly exercises (1 per exercises lesson, 40% of the final grade) c) Do the final exam (40% of the final grade)

Additional information of course implementation

See https://www.bio-complexity.com under the Teaching section.

Exam Thu 20.10.2016 13:00 - 16:00
Exam Tue 29.11.2016 17:00 - 20:00
Exam Tue 10.01.2017 17:00 - 20:00
SGN-53007 Computational Diagnostics/Lec/01 Mon 29.08.2016 12:00 - 14:00
SGN-53007 Computational Diagnostics/Lec/02 Fri 02.09.2016 14:00 - 16:00
SGN-53007 Computational Diagnostics/Lec/01 Mon 05.09.2016 12:00 - 14:00
SGN-53007 Computational Diagnostics/Lec/02 Fri 09.09.2016 14:00 - 16:00
SGN-53007 Computational Diagnostics/Lec/01 Mon 12.09.2016 12:00 - 14:00
SGN-53007 Computational Diagnostics/Lec/02 Fri 16.09.2016 14:00 - 16:00
SGN-53007 Computational Diagnostics/Lec/01 Mon 19.09.2016 12:00 - 14:00
SGN-53007 Computational Diagnostics/Lec/02 Fri 23.09.2016 14:00 - 16:00
SGN-53007 Computational Diagnostics/Lec/01 Mon 26.09.2016 12:00 - 14:00
SGN-53007 Computational Diagnostics/Lec/02 Fri 30.09.2016 14:00 - 16:00
SGN-53007 Computational Diagnostics/Lec/01 Mon 03.10.2016 12:00 - 14:00
SGN-53007 Computational Diagnostics/Lec/02 Fri 07.10.2016 14:00 - 16:00
SGN-53007 Computational Diagnostics/Lec/01 Mon 10.10.2016 12:00 - 14:00
SGN-53007 Computational Diagnostics/Lec/02 Fri 14.10.2016 14:00 - 16:00
SGN-53007 Computational Diagnostics/E/01 Tue 30.08.2016 16:00 - 17:00
SGN-53007 Computational Diagnostics/E/01 Tue 06.09.2016 16:00 - 17:00
SGN-53007 Computational Diagnostics/E/01 Tue 13.09.2016 16:00 - 17:00
SGN-53007 Computational Diagnostics/E/01 Tue 20.09.2016 16:00 - 17:00
SGN-53007 Computational Diagnostics/E/01 Tue 27.09.2016 16:00 - 17:00
SGN-53007 Computational Diagnostics/E/01 Tue 04.10.2016 16:00 - 17:00
SGN-53007 Computational Diagnostics/E/01 Tue 11.10.2016 16:00 - 17:00

Study material

Type Name Author ISBN Additional information Language Examination material
Book An Introduction to Statistical Learning Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani Introductory overview of many methods discussed in the lectures. English No
Book Statistics and Data Analysis for Microarrays Using R and Bioconductor Sorin Drăghici Introduction to the analysis of microarray data. English No