MAT-60106 Complex Analysis, 5 cr

Lisätiedot

The course homepage is in Moodle:

https://moodle2.tut.fi/

Vastuuhenkilö

Petteri Laakkonen

Osaamistavoitteet

After passing the course the student: - recognizes elementary functions and their properties and is able to solve equations consisting of elementary functions. - can decide when a function is analytic and knows the main features of such functions - is able to calculate complex integrals using the fundamental theorem of analysis, integral theorems, and formulas. - can find the Laurent's series for a given function,and knows when the series represent the original function. - can find zeros and poles of a function from its Laurent's series - can compute complex integrals using residy. - can make a Laplace-transform for a given function and apply complex analysis in dealing with transformed functions. - can make logical conclusions, ie. is able to make mathematical proofs.

Sisältö

Sisältö Ydinsisältö Täydentävä tietämys Erityistietämys
1. Complex numbers and elementary functions. Complex plane and its topology. Complex function.    Applications 
2. Continuous and differentiable functions. Analytical Fuctions. Cauchy-Riemann and Laplace equations.    Applications: - Elliptic partial differential equations 
3. Complex Integral. The fundamental theorem of analysis. Cauchy's integral theorem, Cauchy's integral formula      
4. Taylor's and Laurent's series. Residue.  Zeros of Riemann's function   

Oppimateriaali

Tyyppi Nimi Tekijä ISBN URL Lisätiedot Tenttimateriaali
Book   Complex Analysis for Mathematics and Engineering   Mathews& Howell         No   
Book   Complex Variables and Applications   Brown&Churchill   0-07-114065-4       No   

Tietoa esitietovaatimuksista
Recommended prerequisite information consists of Engineering Mathematics (19 cr) or Mathematics (19 cr)



Vastaavuudet

Opintojakso Vastaa opintojaksoa  Selite 
MAT-60106 Complex Analysis, 5 cr MAT-60100 Complex Analysis, 5 cr  
MAT-60106 Complex Analysis, 5 cr MAT-31086 Complex Analysis, 5 cr  

Päivittäjä: Laakkonen Petteri, 24.02.2017