MAT-61256 Geometric Analysis, 7 cr

Lisätiedot

Moodle is used during the course
Suitable for postgraduate studies. Ei toteuteta lukuvuonna 2016-2017.

Vastuuhenkilö

Sirkka-Liisa Eriksson

Opetus

Toteutuskerta Periodi Vastuuhenkilö Suoritusvaatimukset
MAT-61256 2016-01 - Sirkka-Liisa Eriksson
The final exam or two partial exams

Osaamistavoitteet

After completion of the course the students knows the foundations of topological tools and differential calculus in Rn. The Student learn geometric algebras and their importance. The student is capable of applying them in geometric problems. The student knows the foundations of the analysis in higher dimensions using geometric algebras and the special case quaternions.

Sisältö

Sisältö Ydinsisältö Täydentävä tietämys Erityistietämys
1. Topological concepts and main results in R and in Rn. Continuous and differentiable functions.     
2. Inverse function theorom and implicit function theerem.  Primitive functions   
3. Introduction to geometric algebras, quaternions and their basic elements scalars, vectors, bivectors and multivectors     
4. Exterior product, contraction and geometric product and their geometric meaning. Calculation of vector derivatives and integrals using geometric algebras     

Ohjeita opiskelijalle osaamisen tasojen saavuttamiseksi

The grade of the course is based on the final exam or two partial exams. When the points for the final exam or the partial exams are 30% of the maximum, the grade of the course may be improved by bonus points collected from the instructed exercises and homework. The passing limit is 50% of the maximum. If the student is mastering the concepts, results, short proofs and examples type of problems the evaluation is 3. For the grade 4 the student should in addition to the previous level be able to independently apply theory more. For the grade 5 the student should independently deduce results, invent solutions and compare results more than in the previous levels.

Arvosteluasteikko:

Numerical evaluation scale (0-5)

Osasuoritukset:

Completion parts must belong to the same implementation

Oppimateriaali

Tyyppi Nimi Tekijä ISBN URL Lisätiedot Tenttimateriaali
Summary of lectures   Geometric Analysis   Eriksson         Yes   
Summary of lectures             No   

Esitietovaatimukset

Opintojakso P/S Selite
MAT-60206 Mathematical Analysis Advisable    

Vastaavuudet

Opintojakso ei vastaan mitään toista opintojaksoa

Päivittäjä: Ikonen Suvi-Päivikki, 13.04.2016