BMT-73106 Bioceramics and Their Clinical Applications, 4 cr
Person responsible
Jonathan Massera
Lessons
Implementation | Period | Person responsible | Requirements |
BMT-73106 2017-01 | 1 |
Jonathan Massera |
Group report on a review article Group presentation (base don the group report) Exam |
Learning Outcomes
Student can explain characteristics and clinical use of different types of bioceramics. Student can explain which material properties the bioactivity is based on and how it can be controlled.
Content
Content | Core content | Complementary knowledge | Specialist knowledge |
1. | The structure and mechanical properties of bioceramics. | The effect of crystalline and amorphous structures on the bioceramics bioactivity. The limitations of bioceramics mechanical properties in their possible clinical applications. | How to control the bioactivity of bioceramics. |
2. | Biological interactions of bioceramics with the body. | How the bioactivity of certain glasses is based on the basic chemistry and reaction pathways. | How different locations in the body affect the chemistry of bioactive glasses. Differences in chemistry of different bioactive glass products; monoliths, fibers, porous materials, fine powders, etc. |
3. | Fabrication of bioceramics. | The factors that have to be considered when manufacturing bioactive ceramic coatings or bioactive glasses. | The benefits and problems of melt derived bioactive glasses and sol-gel derived bioactive glasses. |
4. | Analysis methods of bioceramics. | The chemistry of bioactive ceramics in in vitro studies. The composition of simulated body fluid. | The limitations of bioactive ceramics in "in vitro" studying compared to "in vivo" studying. The formation of bond between bioactive ceramic and host bone. |
5. | Examples of different types of bioceramics and their clinical applications. | Different bioactive ceramics classifications based on their bioactivity. | Why bioactive glasses show bioactivity? The meaning of Silica in bioactive ceramics. |
Instructions for students on how to achieve the learning outcomes
The final grade of the course is determined based on the assessment of all part of the course. The weighting factor of each part is given at the beginning of the course. Grades 1-2: Learning outcomes have been achieved. Satisfactory command in core content of the course. Grades 3-4: Some learning outcomes have been exceeded qualitatively or quantitatively. Good command in core content and complementary knowledge of the course. Good or very good marks from all parts of the course. Grade 5: Most of the learning outcomes have been exceeded. Deep command in the whole content of the course. Almost maximum performance in all parts of the course.
Assessment scale:
Numerical evaluation scale (0-5)
Partial passing:
Study material
Type | Name | Author | ISBN | URL | Additional information | Examination material |
Book | Bioceramics and Their Clinical Applications | T. Kokubo (ed.) | Yes |
Prerequisites
Course | Mandatory/Advisable | Description |
BMT-61226 Biomedical Engineering: Biomaterials | Mandatory |
Correspondence of content
Course | Corresponds course | Description |
BMT-73106 Bioceramics and Their Clinical Applications, 4 cr | ELT-73106 Bioceramics and Their Clinical Applications, 4 cr | |
BMT-73106 Bioceramics and Their Clinical Applications, 4 cr | BMT-73107 Bioceramics and their Clinical Applications, 5 cr |