MAT-63856 Advanced Applied Logics, 5 cr
Lisätiedot
This course is an extended version of the many-valued logic part of the former Applied Logics course lectured last time in autumn 2011.
It is not possible to include both this course and Applied Logics course to one's curricula. This course will be lectured next time during the academic year 2019-20.
Suitable for postgraduate studies.
Vastuuhenkilö
Esko Turunen
Opetus
Toteutuskerta | Periodi | Vastuuhenkilö | Suoritusvaatimukset |
MAT-63856 2019-01 | 1 |
Esko Turunen |
The lecture diary and a passed exam. |
Osaamistavoitteet
Undersanding the role of non classical logics in real life applications. The inreplay of logical systems and various algebraic structures via Lindembaum-Tarski theorem.
Sisältö
Sisältö | Ydinsisältö | Täydentävä tietämys | Erityistietämys |
1. | Introduction to mathematical fuzzy logic; real life situations where neither black-or-white logic nor statistical methods are applicable. | Graded similarity as a base of fuzzy reasoning. Fuzzy IF-THEN rules. Constructing real world applications by means of multiple valued logic. Para consistent logic in solving decision making problems. | |
2. | Monoidal Logic as a basis of various non-standard logics: linear logic, intuitionistic logic, basic fuzzy logic, Lukasiewicz logic. | Residuated lattices, Girard monoids, Heyting algebras, BL-algebras, Wajsberg algebras and MV-algebras. Semantics, syntax and completeness of various non-standard logics. |
Ohjeita opiskelijalle osaamisen tasojen saavuttamiseksi
Attendind and take actively part into lessons and excercices, more than 50 points in the final examimation.
Arvosteluasteikko:
Numerical evaluation scale (0-5)
Osasuoritukset:
Oppimateriaali
Tyyppi | Nimi | Tekijä | ISBN | URL | Lisätiedot | Tenttimateriaali |
Lecture slides | Esko Turunen | No |
Tietoa esitietovaatimuksista
No individual pre-requisites, however, following the course requires a sufficient amount of mathematical thinking from the 1st, 2nd and 3rd year mathematics courses.
Vastaavuudet
Opintojakso ei vastaan mitään toista opintojaksoa