SGN-54106 Computational Diagnostics, 5 cr

Lisätiedot

Suitable for postgraduate studies.

Vastuuhenkilö

Frank Emmert-Streib, Susanna Ketola

Osaamistavoitteet

After completing the course, the student gained a basic understanding of the definition and the meaning of computational diagnostics and its utility for biomedical research and business intelligence. Case studies will be discussed illustrating the interplay between computational and statistical methods that are applied to large-scale and high-dimensional data sets from genomic experiments and business processes, e.g., the stock market or consumer behavior. Moreover, the student will learn how to practically approach such problems by using the statistical programming language R. In general, the course teaches statistical thinking in the context of biomedical and business problems, i.e., the adaptation of machine learning methods in a problem specific manner.

Sisältö

Sisältö Ydinsisältö Täydentävä tietämys Erityistietämys
1. Classification of disease groups  Computational implementation and interpretation; classification methods   
2. Business intelligence  Data analysis methods for business processes   
3. Survival analysis  Regression models for time-to event processes   
4. Genomics data  Preprocessing and normalization of gene expression data from microarray experiments   
5. Programming in R  Usage and programming in the statistical programming language R   
6. Quantitative assessment of results  Statistical error measures; resampling techniques   
7. Predictive models  Linear regression, hypothesis testing; general models in data science   

Ohjeita opiskelijalle osaamisen tasojen saavuttamiseksi

To complete the course, the student is required to (all three requirements must be completed to pass the course): a) Execute the project work (20% of the final grade) b) Execute the weekly exercises (1 per exercises lesson, 40% of the final grade) c) Do the final exam (40% of the final grade)

Arvosteluasteikko:

Numerical evaluation scale (0-5)

Osasuoritukset:

Completion parts must belong to the same implementation

Oppimateriaali

Tyyppi Nimi Tekijä ISBN URL Lisätiedot Tenttimateriaali
Book   An Introduction to Statistical Learning   Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani         No   
Book   Statistics and Data Analysis for Microarrays Using R and Bioconductor   Sorin Dr       Introduction to the analysis of microarray data.   No   

Tietoa esitietovaatimuksista
Basic programming skills. Experience with the language R are desirable, but not necessary. Basic knowledge in Mathematics and Machine Learning. Basic knowledge of biology/systems biology.



Vastaavuudet

Opintojakso Vastaa opintojaksoa  Selite 
SGN-54106 Computational Diagnostics, 5 cr BMT-53007 Computational Diagnostics, 5 cr  

Päivittäjä: $course.modifier, 09.08.2019