IHA-4306 Fundamentals of Mobile Robots, 5 cr

Lisätiedot

Opintojaksolla IHA-4306 Fundamentals of Mobile Robots rajoitamme opiskelijoiden määrää
The number of students will be limited. The course is only intended for degree students

Vastuuhenkilö

Reza Ghabcheloo, Risto Ritala

Opetus

Toteutuskerta Periodi Vastuuhenkilö Suoritusvaatimukset
IHA-4306 2019-01 3 - 4 Reza Ghabcheloo
Risto Ritala
Individual and group assignments passed. Open book exam.

Osaamistavoitteet

This course introduces some answers to the basic questions of "where am I?" and "where have I seen?" and "How do I get there?", which are called location, mapping and planning, respectively, in the robotic community. More specifically, - Students will learn basics about range sensors (Lidar, Radar, Sonar), radio based (GNSS, UWB), egomotion sensors (IMUs, wheel odometry) and their noise characteristics and probabilistic modeling. - Students will learn about coordinate frames and sensor kinematics, that is, how to calculate sensor output in different coordinate frames. - Students will learn how to fuse information comming from different sources (sensors, maps, control inputs,etc) using Bayes filters in particular Kalman filters and particle filters, and to use those to localize moving platforms. - Students will learn about basic world model representations and how to build them (map building) from sensor inputs. - Students will learn important deterministic route planning methods: Dynamic programming (DP), Dijkstra, A*, - Student will also learn planning under uncertainty with MDP (Markov Decision Processes) Notes: * The focus of the planning part of the course will be on point robots, to avoid some complications which will rise due to differential kinematics of contact with ground. * Although the focus of examples and presentation is on mobile robots moving on a 2D plane, most of the methods are applicable to higher dimenstions (manipulators or moving in 3D).

Sisältö

Sisältö Ydinsisältö Täydentävä tietämys Erityistietämys
1. Deterministic planning methods: dynamic programming, Dijkstra, A*   planning under uncertainty: solving MDP  How to convert continuous real world to discrete world suitable for planners. POMDP 
2. Bayesian filtering  mathematics of probabilities   
3. Localization using Kalman filters and particle filters.    Simultaneous Localization and Mapping 
4. Occupancy grid mapping   world models and representations   
5. Sensor technologies (LiDAR, Radar, Sonar, Leddar, IMU, GNSS, UWB), sensor models (LiDAR, Sonar, IMU) and their uncertainty     
6. Motion control: path smoothing, path following and trajectory tracking  state space models, state feedback   

Tietoa esitietovaatimuksista
Good programming skill (Matlab or C/C++), good maths (matrix algebra, probability theory), algorithmic thinking, dynamic systems and feedback control

Vastaavuudet

Opintojakso ei vastaan mitään toista opintojaksoa

Päivittäjä: Laine Marja-Liisa, 06.03.2019