MAT-61806 Optimisation and Statistical Data Analysis, 5 cr
Lisätiedot
Acceptable for postgraduate studies if grade is at least 3.
Suitable for postgraduate studies.
Vastuuhenkilö
Robert Piche
Opetus
Toteutuskerta | Periodi | Vastuuhenkilö | Suoritusvaatimukset |
MAT-61806 2019-01 | 3 - 4 |
Mostafa Mansour Robert Piche Jaakko Pihlajasalo |
The grade is based on a set of tests in the EXAM system. Bonus points are given for active participation in the weekly exercise sessions. |
Osaamistavoitteet
After completing the course, the student has knowledge of problems, solution methods, and software for optimisation and statistical data analysis, and is able to use software to model and solve practical problems.
Sisältö
Sisältö | Ydinsisältö | Täydentävä tietämys | Erityistietämys |
1. | Computer arithmetic: floating point numbers; FP arithmetic | ||
2. | Linear programming: LP problems in production planning, transportation allocation, and diet planning; solving them with Matlab LINPROG | ill-posed LP problems | |
3. | Curve fitting: least squares fit of a line and of a polynomial; data linearisation transformations | robust curve fitting using linear programming | |
4. | Nonlinear least squares: problems in positioning, curve fitting, and feedback controller design; solution with Matlab LSQNONLIN | Gauss-Newton method; ill-conditioned problems | |
5. | Nonlinear optimisation: unconstrained problems and solution with FMINUNC; Lagrange multipliers; solution with FMINCON | quadratic cost with linear equality constraints | |
6. | Multiobjective optimisation: Pareto optimality; weighted sum method; goal attainment with FGOALATTAIN | Feedback controller design as a multiobjective optimisation problem. | |
7. | Visualising data: histogram, CDF, medians, quantiles, box plots, data graphics do's and don'ts | kernel smoothing with KSDENSITY | |
8. | Inference on categories: frequency diagram, Bayes formula, Bayesian nets, AISPACE software | ||
9. | Inference on probability-of-success: binomial sampling model; posterior distribution and predictive distribution; using prior information; sequential learning | Monte Carlo method for inference on parameter difference | |
10. | Inference on an average: Gaussian sampling model; posterior distribution & predictive distribution; using prior information; sequential learning | normal QQ plot | |
11. | Multiple linear regression: fitting a line; posterior distribution & predictive distribution; sequential learning | fitting a polynomial; assessing the goodness of fit | |
12. | Filtering: state space model, Kalman filter, steady-state KF, target tracking | Bayes filter; channel estimation |
Esitietovaatimukset
Opintojakso | P/S | Selite |
MAT-01566 Mathematics 5 | Mandatory | |
MAT-02106 Multivariable Calculus | Mandatory |
Tietoa esitietovaatimuksista
In addition to the mandatory prerequisites courses, the student should be competent in basic matrix analysis and basic Matlab programming..
Vastaavuudet
Opintojakso | Vastaa opintojaksoa | Selite |
MAT-61806 Optimisation and Statistical Data Analysis, 5 cr | ASE-4046 Optimisation and Data Analysis, 5 cr |