PLA-43106 Data Mining, 5 cr
Lisätiedot
Porin opetustarjonnassa, mutta mahdollista myös suorittaa etäopiskeluna itsenäisesti verkkomateriaalin avulla.
Vastuuhenkilö
Pekka Ruusuvuori, Nathaniel Narra
Opetus
Toteutuskerta | Periodi | Vastuuhenkilö | Suoritusvaatimukset |
PLA-43106 2019-01 | 3 - 4 |
Nathaniel Narra Pekka Ruusuvuori |
Active participation and successful completion of exercise works. |
Osaamistavoitteet
The course gives an introduction to data mining and analysis of large datasets. For example, networks and databases involve massive amounts of data, and mining of useful information from data is an increasingly common challenge. By taking the course, the student learns the basic principles and terminology of data mining, knows the commonly used algorithms, and recognizes the typical challenges of processing large datasets. The course will introduce several application areas of data mining, including the principles of web search engines, recommendation systems, and web advertising.
Sisältö
Sisältö | Ydinsisältö | Täydentävä tietämys | Erityistietämys |
1. | The concept and terminology of data mining. | Knowledge of the basic methods and algorithms. | Knowledge of the limitations of data mining. |
2. | Understanding the special principles of processing large, non-structured datasets. | Special challenges of processing large datasets: memory usage and data formats. | Mapreduce algorithm. |
3. | Basic principles of web search engines. |
Oppimateriaali
Tyyppi | Nimi | Tekijä | ISBN | URL | Lisätiedot | Tenttimateriaali |
Book | Mining of Massive Datasets | A. Rajaraman, J. Leskovec, J.D. Ullman | Yes | |||
Lecture slides | P. Ruusuvuori | Yes |
Vastaavuudet
Opintojakso ei vastaan mitään toista opintojaksoa