SGN-13006 Introduction to Pattern Recognition and Machine Learning, 5 cr

Lisätiedot

Lectures are in English, but exercise sessions are given in both Finnish and English.

Vastuuhenkilö

Joni Kämäräinen

Opetus

Toteutuskerta Periodi Vastuuhenkilö Suoritusvaatimukset
SGN-13006 2019-01 1 Joni Kämäräinen
Active participation, homeworks, exercises and exam.

Osaamistavoitteet

This course will provide a broad introduction to Pattern Recognition (PR) and Machine Learning (ML). The course is programming oriented concentrating on models of learning (data structures to establish these models) and methods of learning (algorithms to modify data structures according to training data). After the course students will know the main approaches to machine learning starting from early ideas to the most recent ones. Students will also obtain skills to implement ML&PR methods and evaluate them with real data.

Sisältö

Sisältö Ydinsisältö Täydentävä tietämys Erityistietämys
1. Basic work flow in pattern recognition and machine learning. Linear models of regression and classification as the starting point.     
2. Concept learning.      
3. Decision tree learning  Random forests   
4. Bayesian learning and probability density estimation     
5. Prolog language and the principal idea of inductive logic programming.     
6. Multi-layer perception neural networks and support vector machines.     
7. Unsupervised learning including clustering, self-organising map and linear methods (principal component analysis)     
8. Pattern recognition and machine learning in robotics and re-inforcement learning.     

Ohjeita opiskelijalle osaamisen tasojen saavuttamiseksi

You must actively participate the lectures and do the exercises. In particular, familiarize yourself with the exercise questions before the exercise session.

Arvosteluasteikko:

Numerical evaluation scale (0-5)

Osasuoritukset:

Completion parts must belong to the same implementation

Oppimateriaali

Tyyppi Nimi Tekijä ISBN URL Lisätiedot Tenttimateriaali
Book   Elements of Statistical Learning, 2nd edition   Trevor Hastie, Robert Tibshirani, Jerome Friedman       Covers all the required methods, but is rather statistical approach. Mainly the random forest part is taken from this book.   Yes   
Book   Machine Learning   Tom Mitchell   0070428077     Contents of many lectures follow this book   Yes   
Book   Statistical Pattern Recognition, 3rd Edition   Andrew R. Webb, Keith D. Copsey   978-0-470-68227-2     Very good book about the topic from practioners. Mainly the support vector machines part is taken from this book.   Yes   

Tietoa esitietovaatimuksista
No mandatory requirements, but students are assumed to have good knowledge about BSc level engineering mathematics and programming.



Vastaavuudet

Opintojakso Vastaa opintojaksoa  Selite 
SGN-13006 Introduction to Pattern Recognition and Machine Learning, 5 cr SGN-2506 Introduction to Pattern Recognition, 4 cr  
SGN-13006 Introduction to Pattern Recognition and Machine Learning, 5 cr SGN-13000 Introduction to Pattern Recognition and Machine Learning, 5 cr  

Päivittäjä: Kunnari Jaana, 05.03.2019