Course Catalog 2006-2007

MAT-31106 NUMERICAL ANALYSIS 1, 3 cr
Numerical Analysis 1

Courses persons responsible
Robert Piche

Lecturers
Robert Piche

Implementations
  Period 1 Period 2 Period 3 Period 4 Period 5 Summer
Exercise - - 2 h/week - - -
Exam  
(Timetable for academic year 2006-2007)

Objectives
Theory and practical application of essential numerical methods for scientific and engineering problem solving.

Content
Content Core content Complementary knowledge Specialist knowledge
1. Error analysis  Sources of error, error characterization, sensitivity, cancellation    
2. Solving nonlinear equations  root multiplicity, bisection, Newton & secant method, convergence, stopping criteria    
3. Interpolation and approximation  uniqueness, error, formulas (Newton, Neville, Lagrange), Runge example, Hermite interpolation, least squares & orthogonal polynomials    
4. Integration  quadrature formulas from polynomials, composite Newton-Cotes methods, Romberg method, adaptive quadrature, improper integrals    
5. Differential equation initial value problems  standard form, Euler's, Heun's, and Runge-Kutta methods, adaptive step size, numerical stability, stiff solvers    

Requirements for completing the course
Exam

Evaluation criteria for the course

  • Used assessment scale is numeric (1-5)

  • Study material
    Type Name Auhor ISBN URL Edition, availability... Exam material Language
    Book Introduction to Numerical Computation Lars Eldén et al. 91-44-03727-9   Studentlitteratur, 2004 Yes  English 

    Prerequisites
    Prequisite relations (Sign up to TUT Intranet required)

    Additional information about prerequisites
    First year engineering mathematics

    Remarks

  • The course is suitable for postgraduate studies.

  • Scaling
    Methods of instructionHours
    Exercises 72

    Other scaledHours
    Exam/midterm exam 3
    Total sum 75

    Correspondence of content
    MAT-31100 Numerical Analysis 1

    Course homepage

    Last modified 13.03.2006
    Modified byRobert Piche