Course Catalog 2006-2007

MAT-51626 MATRIX ALGEBRA 2, 6 cr
Matrix Algebra 2

Courses persons responsible
Robert Piche

Implementations
  Period 1 Period 2 Period 3 Period 4 Period 5 Summer
Lecture - - 4 h/week 4 h/week - -
(Timetable for academic year 2006-2007)

Objectives
Learn the mathematical basis and practical issues related to modern numerical methods for the direct and iterative solution of linear equations, least squares problems, and eigenvalue problems.

Content
Content Core content Complementary knowledge Specialist knowledge
1. matrix factorizations and decompositions       
2. perturbation theory and conditioning       
3. floating point arithmetic and roundoff effects       
4. structure-exploiting algorithms       
5. the engineering of numerical software       

Requirements for completing the course
Homework problems.

Evaluation criteria for the course

  • Used assessment scale is numeric (1-5)

  • Study material
    Type Name Auhor ISBN URL Edition, availability... Exam material Language
    Book Applied Numerical Linear Algebra J. W. Demmel 0-89871-389-7   SIAM 1997 No  English 

    Prerequisites
    Code Course Credits M/R
    MAT-31090 MAT-31090 Matrix Algebra 1 5 Mandatory

    Prequisite relations (Sign up to TUT Intranet required)

    Remarks

    Course is lectured every second year.

  • Partial passing of course must be in connection with the same round of implementation.

  • The course is suitable for postgraduate studies.

  • Course will not be lectured in the academic year 2006-2007.

  • Scaling
    Methods of instructionHours
    Lectures 96
    Assignments 60
    Total sum 156

    Correspondence of content
    MAT-51620 Matrix Algebra 2

    Course homepage

    Last modified 24.04.2006
    Modified byRobert Piche