Course Catalog 2008-2009
Basic

Basic Pori International Postgraduate Open University

|Degrees|     |Study blocks|     |Courses|    

Course Catalog 2008-2009

SGN-6236 Modeling Techniques for Stochastic Gene Regulatory Networks, 3 cr

Course´s person responsible

Andre Sanches Ribeiro

Implementations

  Lecture times and places Target group recommended to
Implementation 1


Per 1 :
Monday 14 - 16, TB214
Friday 14 - 17, TC303
Tuesday 14 - 16, TC165

 
Biotekniikan koulutusohjelma
DI-Opiskelijat
Jatko-opiskelijat
Teknis-luonnontieteellinen koulutusohjelma
Tieto- ja sähkötekniikan tiedekunta
Tietotekniikan koulutusohjelma
Ympäristö- ja energiatekniikan koulutusohjelma  


Requirements

Project work (20% of the final grade), exercises (1 per exercises lesson, 40% of the final grade) and final exam (40% of the final grade). The student is required to pass the course: a) must execute all the three requirements. b) must attend and complete at least 50% of the exercises lessons

Principles and baselines related to teaching and learning

-

Objectives

Student will know how to do exact stochastic simulations, delayed stochastic simulations, and how to create models of delayed stochastic gene regulatory networks.

Content

Content Core content Complementary knowledge Specialist knowledge
1. The Stochastic Simulation Algorithm and The Delayed Stochastic Simulation Algorithm     
2. Modeling single gene expression with the delayed Stochastic Simulation Algorithm     
3. A stochastic delayed modeling strategy of Gene Regulatory Networks: models of noisy attractors as cell types, and ergodic sets     
4. Stochastic models of cell differentiation     
5. Examples and applications of the modeling strategies     


Study material

Type Name Author ISBN URL Edition, availability, ... Examination material Language
Journal   A General Modeling Strategy for Gene Regulatory Networks with Stochastic Dynamics   Andre S. Ribeiro, R. Zhu, S. A. Kauffman       Andre S. Ribeiro, R. Zhu, S. A. Kauffman, A General Modeling Strategy for Gene Regulatory Networks with Stochastic Dynamics, Journal of Computational Biology, Vol. 13 (9), 1630-1639, 2006.      English  
Journal   A general method for numerically simulating the stochastic time evolution of coupled chemical reactions   Gillespie, D. T.       Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 1976, 403-434.      English  
Journal   Exact stochastic simulation of coupled chemical reactions   Gillespie, D. T.       Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 1977, 2340-2361      English  
Journal   Modeling and Simulation of Genetic Regulatory Systems: A Literature Review   Hidde de Jong       Hidde de Jong, Modeling and Simulation of Genetic Regulatory Systems: A Literature Review, Journal of Computational Biology. 2002, 9(1): 67-103.      English  
Journal   Noisy Attractors and Ergodic Sets in Models of Genetic Regulatory Networks   Andre S. Ribeiro, S. A. Kauffman       Andre S. Ribeiro, S. A. Kauffman, Noisy Attractors and Ergodic Sets in Models of Genetic Regulatory Networks, J. of Theoretical Bio., 247, Issue 4, 2007, Pgs 743-755      English  
Journal   SGNSim a stochastic gene network simulator   Andre S. Ribeiro and Jason Lloyd-Price       Bioinformatics      English  
Journal   Studying genetic regulatory networks at the molecular level: Delayed reaction stochastic models   Rui Zhu, Andre S. Ribeiro, Dennis Salahub, and Stuart A. Kauffman       Rui Zhu, Andre S. Ribeiro, Dennis Salahub, and Stuart A. Kauffman, "Studying genetic regulatory networks at the molecular level: Delayed reaction stochastic models", Journal of Theoretical Biology, 246(4):725-45, 2007.      English  
Other literature   A Model of Genetic Networks with Delayed Stochastic Dynamics   Andre S. Ribeiro       Andre S. Ribeiro, A Model of Genetic Networks with Delayed Stochastic Dynamics, in “Analysis of Microarray Data: Network based Approaches”, Wiley, Matthias Dehmer and Frank Emmert-Streib (Editors), 2007.      English  


Prerequisites

Course O/R
SGN-6056 Introduction to Computational Systems Biology Recommended  

Prerequisite relations (Requires logging in to POP)

Additional information

The course is lectured every other year. Course webpage: http://www.cs.tut.fi/~sanchesr/SGN-6236/index.htm

More precise information per implementation

  Description Methods of instruction Implementation
Implementation 1 From this course the student will know how to do exact stochastic simulations, delayed stochastic simulations, and how to create models of delayed stochastic gene regulatory networks. Students will become familiar with detailed models and experimental results related to single gene expression and its underlying mechanisms. Also, the student will be introduced to basic concepts of cell type and cell differentiation and learn the latest modeling techniques in these topics.   Lectures
Excercises
ITC Utilization
Practical works
   
Contact teaching: 50 %
Distance learning: 0 %
Self-directed learning: 50 %  


Last modified04.08.2008
ModifierAndre Sanches Ribeiro