Opinto-opas 2009-2010
Pori

Perus Pori KV Jatko Avoin

|Tutkinnot|     |Opintokokonaisuudet|     |Opintojaksot|    

Opinto-opas 2009-2010

MATP-1020 Johdatus fysiikan matematiikkaan, 0 op
Introduction to Mathematics for Physics

Vastuuhenkilö

Reijo Laihia

Toteutuskerrat

  Luentoajat ja -paikat Kohderyhmä, jolle suositellaan
Toteutus 1


Per 4 :
Maanantai 0 - 0, Pori

 
Porin opiskelijat  


Suoritusvaatimukset

Tentti
Osasuoritusten pitää liittyä samaan toteutuskertaan

Osaamistavoitteet

Kurssin käytyään opiskelija tietää eron skalaarin ja vektorin välillä. Osaa vektoreiden peruslaskutoimitukset yhteen- ja vähennyslaskun ja vektorin kertomisen skalaarilla. Osaa laskea taso- ja avaruusvektoreiden pistetulon ja avaruusvektoreiden ristitulon. Osaa muodostaa skalaarifunktion gradientin ja laskea viivaintegraalin, jonka sovelluksena on fysiikassa hyvin usein esiintyvä työintegraali. Osaa laskea pintaintegraalin, jonka sovelluksena on fysiikassa usein esiintyvä vuointegraali.

Sisältö

Sisältö Ydinaines Täydentävä tietämys Erityistietämys
1. 1) Vektorialgebra: Vektorien yhteen- ja vähennyslasku ja vektorin kertominen skalaarilla. Vektorien välinen pistetulo ja avaruusvektorien välinen ristitulo. 2) Osittaisderivaatta 3) Gradientti 4) Viiva- ja pintaintegraalit. 5) Tilavuusintegraali     


Oppimateriaali

Tyyppi Nimi Tekijä ISBN URL Painos,saatavuus... Tenttimateriaali Kieli
Opintomoniste   Differentiaali- ja integraalilaskentaa   Timo Ojala, Leena Ojala ja Timo Ranta            Suomi  
Opintomoniste   Geometriaa, Osa 2   Timo Ojala, Leena Ojala ja Timo Ranta            Suomi  


Esitietoketju (Vaatii kirjautumisen POPiin)

Vastaavuudet

Opintojakso ei vastaan mitään toista opintojaksoa

Tarkempia tietoja toteutuskerroittain

  Kuvaus Opetusmuodot Toteutustapa
Toteutus 1 Kurssissa käsitellään aiheita: 1) Vetorien yhteen- ja vähennyslasku ja vektorin kertominen skalaarilla. 2) Taso- ja avaruusvektorit. 3) Taso- ja avaruusvektorien pistetulo ja avaruusvektorien ristitulo. 4) Osittaisderivaatta ja siihen liittyen skalaarifunktion gradientti. 5) Viivaintegraali ja sen sovelluksena fysiikassa usein esiintyvä työintegraalin käsite. 6) Pintaintegraali ja sen sovelluksena fyysikassa esiintyvä vuointegraalin käsite. 7) Tilavuusintegraali       Lähiopetus: 0 %
Etäopetus: 0 %
Itseopiskelu: 0 %  


Viimeksi muokattu26.05.2009
MuokkaajaReijo Laihia