Opinto-opas 2010-2011
Perus

Perus Pori KV Jatko Avoin

|Tutkinnot|     |Opintokokonaisuudet|     |Opintojaksot|    

Opinto-opas 2010-2011

MAT-10411 Insinöörimatematiikka A 1u, 5 op
Engineering Mathematics A 1u

Vastuuhenkilö

Martti Lehto

Opetus

Opetusmuoto P1 P2 P3 P4 Kesä Toteutuskerrat Luentoajat ja -paikat
Luennot
Harjoitukset
 36 h/per
 23 h/per


 


 


 


 
MAT-10411 2010-01 Maanantai 14 - 16, TB104
Tiistai 10 - 12, TB104
Keskiviikko 10 - 12, TB104

Suoritusvaatimukset

Hyväksytysti suoritettu perustaitojen testi tai jumppa, pakolliset harjoitukset sekä hyväksytysti suoritettu tentti.

Osaamistavoitteet

Opintojakson suoritettuaan opiskelija osaa tulkita ja kirjoittaa reaalilukujen osajoukkoja yhdistettä, leikkausta, erotusta ja komplementtia käyttäen. Opiskelija osaa hahmotella alkeisfunktioiden ja niistä koostettujen yksinkertaisten funktioiden kuvaajia, laskea derivaattoja ja tehdä derivaatan avulla johtopäätöksiä funktion kulusta ja ääriarvoista ja tutkia funktion käyttäytymistä raja-arvoja laskemalla. Opiskelija osaa ilmaista kompleksiluvun koordinaatti- ja napakoordinaattimuodossa, laskea peruslaskutoimituksia molempia esityksiä käyttäen ja siirtyä näiden esitysten välillä, laskea kompleksiluvun juuret ja jakaa reaalikertoimisen polynomin tekijöihinsä.

Sisältö

Sisältö Ydinaines Täydentävä tietämys Erityistietämys
1. JOUKKO-OPIN, LOGIIKAN JA TODISTAMISEN PERUSTEITA: Yhdiste, leikkaus, erotus ja komplementti. Olemassaolo- ja kaikkikvanttorit. Suora ja epäsuora todistus, induktiotodistus ja vastaesimerkki.   Lauselogiikan lause ja totuustaulukko sekä looginen seuraus.   Boolen algebra ja loogiset virtapiirit.  
2. YLEISTÄ FUNKTIO-OPPIA JA ALKEISFUNKTIOT: Monotonisuus ja käänteisfunktio sekä yhdistetty funktio. Potenssi- ja juurifunktiot, eksponentti- ja logaritmifunktiot, trigonometriset funktiot ja arkusfunktiot.   Kuvajoukko, arvojoukko ja alkukuva.    
3. FUNKTION RAJA-ARVO: Raja-arvo, peruslaskusäännöt, kuristusperiaate, toispuoleiset raja-arvot ja epäoleelliset raja-arvot.      
4. FUNKTION JATKUVUUS: Jatkuvuus, vasemmalta ja oikealta jatkuvuus, summan, tulon ja osamäärän jatkuvuus sekä yhdistetyn funktion jatkuvuus.   Jatkuvien funktioiden väliarvolause ja käänteisfunktion jatkuvuus.    
5. DERIVAATTA: Derivaatta erotusosamäärän raja-arvona, perussäännöt, ketjusääntö, alkeisfunktioiden derivaatat, ääriarvot ja funktion kulku sekä korkeammat derivaatat.  Käänteisfunktion derivaatta, lineaarinen approksimaatio, differentiaalilaskennan väliarvolause ja l'Hospitalin sääntö.   Kuperuus ja käännepiste.  
6. KOMPLEKSILUVUT: Peruslaskutoimitukset, liittoluku ja itseisarvo, napakoordinaattimuoto, eksponenttifunktio ja Eulerin kaava, kompleksiluvun juuri, reaalikertoimisen polynomin tekijöihinjako ja nollakohdat.   Algebran peruslause (ilman todistusta) ja nollakohdan kertaluku.   Rationaalijuurten haku.  

Opintojakson arvostelu

Opintojakson suoritus koostuu pakollisista harjoituksista ja tentistä. Ahkerasta laskuharjoitustehtävien ratkomisesta saa bonuspisteitä tenttiin, joilla voi hyväksytyn tenttisuorituksen arvosanaa korottaa yhdellä numerolla. Hyvä taito ratkaista ydinainekseen liittyviä suoraviivaisia laskutehtäviä riittää opintojakson läpäisemiseen arvosanalla 3. Arvosanan 4 tai 5 saavuttaakseen opiskelijan on osattava laskea myös täydentävään tietämykseen liittyviä ja soveltavampia laskutehtäviä ja kirjoittaa suoria, epäsuoria ja induktiotodistuksia yksinkertaisissa tilanteissa.

Arvosteluasteikko:

Opintojaksolla käytetään numeerista arviointiasteikkoa (1-5)

Oppimateriaali

Tyyppi Nimi Tekijä ISBN URL Painos,saatavuus... Tenttimateriaali Kieli
Kirja   Calculus 6e, Early Transcendentals, Matrix Version   Edwards & Penney            Englanti  
Kirja   Linear algebra, A modern introduction (2nd ed.)   Poole, David            Englanti  

Esitietoketju (Vaatii kirjautumisen POPiin)

Vastaavuudet

Opintojakso ei vastaan mitään toista opintojaksoa

Tarkempia tietoja toteutuskerroittain

Toteutus Kuvaus Opetusmuodot Toteutustapa
MAT-10411 2010-01        

Viimeksi muokattu28.01.2010