Opinto-opas 2011-2012
Perus

Perus Pori KV Jatko Avoin

|Tutkinnot|     |Opintokokonaisuudet|     |Opintojaksot|    

Opinto-opas 2011-2012

MAT-13540 Laaja matematiikka 4u, 4 op
Honours Mathematics 4u

Vastuuhenkilö

Risto Silvennoinen

Opetus

Opetusmuoto P1 P2 P3 P4 Kesä Toteutuskerrat Luentoajat ja -paikat
Luennot
Harjoitukset


 


 


 
 28 h/per
 27 h/per


 
MAT-13540 2011-01 Tiistai 10 - 12, K1703
Keskiviikko 10 - 12, K1703

Osaamistavoitteet

Opintojakson suoritettuaan opiskelija osaa tutkia ja havannollistaa kahden muuttujan reaaliarvoisen funktion käyttäytymistä kuvaajan ja tasa-arvokäyrien avulla, laskea usean muuttujan funktion raja-arvoja, ensimmäisen ja korkeamman kertaluvun osittaisderivaatat, gradientin ja suunnatun derivaatan sekä hakea lokaaleja ja globaaleja ääriarvoja ja käyttää Lagrangen menetelmää. Opiskelija osaa muodostaa vektoriarvoisen funktion derivaattamatriisin ja käyttää ketjusääntöä. Opiskelija osaa laskea taso- ja avaruusintegraaleja projisoituvissa joukoissa ja käyttää napa-, sylinteri- ja pallokoordinaatteja. Opiskelija osaa perustella ja todistaa matemaattisia väitteitä.

Sisältö

Sisältö Ydinaines Täydentävä tietämys Erityistietämys
1. 1 USEAN MUUTTUJAN REAALIARVOISET FUNKTIOT: Kahden muuttujan reaaliarvoisen funktion kuvaaja ja tasa-arvokäyrät. Usean muuttujan reaaliarvoiset funktiot: raja-arvo ja jatkuvuus, osittaisderivaatat, korkeammat osittaisderivaatat, suunnattu derivaatta ja gradientti.   Pallo, avoimet ja suljetut joukot. Lineaarinen approksimointi ja differentioituvuus. Taylorin kaava.   Lauseiden todistaminen. 
2. 2 USEAN MUUTTUJAN VEKTORIARVOISET FUNKTIOT: Derivaattamatriisi ja ketjusääntö.   Hessen matriisi ja Taylorin kaava.  Lauseiden todistaminen. 
3. 3 ÄÄRIARVOTARKASTELUJA: Lokaalit ja globaalit ääriarvot, sidotut ääriarvot ja Lagrangen menetelmä.     Lauseiden todistaminen. 
4. 4 TASO- JA AVARUUSINTEGRAALI: Laskeminen projisoituvissa joukoissa, laskeminen napa-, sylinteri- ja pallokoordinaatteja käyttäen.   Yleinen muuttujanvaihto, väliarvolause ja funktion keskiarvo, massakeskipiste ja epäoleelliset integraalit.   Lauseiden todistaminen. 
5. Matemaattisten ohjelmistojen Matlab ja Maple hallinta.     

Opintojakson arvostelu

Opintojakson arvosteluperusteet Arvosana määräytyy harjoitusten ja tentin perusteella. Läpipääsyyn vaaditaan hyväksytysti suoritettu tentti. Hyväksymisraja tentissä on maksimista puolet tai alempi. Tentissä saatuja, hyväksymisrajan ylittäneitä pisteitä voi parantaa harjoituksissa aktiivisesta osallistumisesta etukäteen saaduilla pisteillä eri taulukon mukaan. Ydinaineksen hallitseminen hyvin riittää opintojakson läpäisemiseen arvosanalla 3. Arvosanan 4 saavuttamiseksi on osattava myös täydentävän tietämyksen asioita. Arvosanaa 5 varten on osattava täydentävän tietämyksen asioita hyvin ja tunnettava erityistietämykseen kuuluvia todistusmenetelmiä.

Arvosteluasteikko:

Opintojaksolla käytetään numeerista arviointiasteikkoa (1-5)

Oppimateriaali

Tyyppi Nimi Tekijä ISBN URL Painos,saatavuus... Tenttimateriaali Kieli
Opintomoniste   Laaja marematiikka 4   Risto Silvennoinen            Suomi  
Opintomoniste     Risto Silvennoinen            Suomi  

Esitietoketju (Vaatii kirjautumisen POPiin)

Vastaavuudet

Opintojakso ei vastaan mitään toista opintojaksoa

Tarkempia tietoja toteutuskerroittain

Toteutus Kuvaus Opetusmuodot Toteutustapa
MAT-13540 2011-01        

Viimeksi muokattu20.01.2011