|
Opinto-opas 2012-2013
MAT-10443 Insinöörimatematiikka C 4u, 4 op
|
Vastuuhenkilö
Jani Hirvonen
Opetus
Opetusmuoto | P1 | P2 | P3 | P4 | Kesä | Toteutuskerrat | Luentoajat ja -paikat |
|
|
|
|
|
|
|
|
Suoritusvaatimukset
Hyväksytty harjoitussuoritus sekä hyväksytysti suoritettu tentti.
Osaamistavoitteet
Opintojakson suoritettuaan opiskelija osaa tutkia ja havannollistaa kahden muuttujan reaaliarvoisen funktion käyttäytymistä kuvaajan ja tasa-arvokäyrien avulla, laskea usean muuttujan funktion raja-arvoja, ensimmäisen ja korkeamman kertaluvun osittaisderivaatat, gradientin ja suunnatun derivaatan sekä hakea lokaaleja ja globaaleja ääriarvoja ja käyttää Lagrangen menetelmää. Opiskelija osaa muodostaa vektoriarvoisen funktion derivaattamatriisin ja käyttää ketjusääntöä. Opiskelija osaa laskea taso- ja avaruusintegraaleja projisoituvissa joukoissa ja käyttää napa-, sylinteri- ja pallokoordinaatteja.
Sisältö
Sisältö | Ydinaines | Täydentävä tietämys | Erityistietämys |
1. | USEAN MUUTTUJAN REAALIARVOISET FUNKTIOT: Kahden muuttujan reaaliarvoisen funktion kuvaaja ja tasa-arvokäyrät. Usean muuttujan reaaliarvoiset funktiot: raja-arvo ja jatkuvuus, osittaisderivaatat, korkeammat osittaisderivaatat, suunnattu derivaatta ja gradientti. | Pallo, avoimet ja suljetut joukot. Lineaarinen approksimointi ja differentioituvuus. Taylorin kaava. | |
2. | USEAN MUUTTUJAN VEKTORIARVOISET FUNKTIOT: Derivaattamatriisi ja ketjusääntö. | Hessen matriisi ja Taylorin kaava. | |
3. | ÄÄRIARVOTARKASTELUJA: Lokaalit ja globaalit ääriarvot, sidotut ääriarvot ja Lagrangen menetelmä. | ||
4. | TASO- JA AVARUUSINTEGRAALI: Laskeminen projisoituvissa joukoissa, laskeminen napa-, sylinteri- ja pallokoordinaatteja käyttäen. | Yleinen muuttujanvaihto, väliarvolause ja funktion keskiarvo, massakeskipiste ja epäoleelliset integraalit. |
Opintojakson arvostelu
Arvosana määräytyy harjoitusten ja tentin perusteella. Läpipääsyyn vaaditaan vähintään 40% aktiivinen osallistuminen harjoituksiin ja hyväksytysti suoritettu tentti. Hyväksymisraja tentissä on maksimista puolet tai alempi. Tentissä saatuja, hyväksymisrajan ylittäneitä pisteitä voi parantaa harjoituksissa aktiivisesta osallistumisesta etukäteen saaduilla pisteillä eri taulukon mukaan. Ydinaineksen hallitseminen hyvin riittää opintojakson läpäisemiseen arvosanalla 3. Arvosanan 4 saavuttamiseksi on osattava myös täydentävän tietämyksen asioita. Arvosanaa 5 varten on osattava täydentävän tietämyksen asioita hyvin.
Arvosteluasteikko:
Opintojaksolla käytetään numeerista arviointiasteikkoa (1-5)
Oppimateriaali
Tyyppi | Nimi | Tekijä | ISBN | URL | Painos,saatavuus... | Tenttimateriaali | Kieli |
Kirja | Calculus 6e, Early Transcendentals, Matrix Version | Edwards & Penney | Englanti | ||||
Kirja | Linear Algebra, A Modern Introduction (2nd ed.) | Poole, David | Englanti |
Esitietovaatimukset
Opintojakso | P/S | Selite |
MAT-10413 Insinöörimatematiikka C 1u | Suositeltava | |
MAT-10423 Insinöörimatematiikka C 2u | Suositeltava | |
MAT-10433 Insinöörimatematiikka C 3u | Suositeltava |
Esitietoketju (Vaatii kirjautumisen POPiin)
Vastaavuudet
Opintojakso | Vastaa opintojaksoa | Selite |
|
|
Tarkempia tietoja toteutuskerroittain
Toteutus | Kuvaus | Opetusmuodot | Toteutustapa |
Lähiopetus: 0 % Etäopetus: 0 % Itseopiskelu: 0 % |