
TAMPERE UNIVERSITY OF TECHNOLOGYDegree Programme in Information Tehnology

VELI-PEKKA JÄÄSKELÄINENRETARGETABLE COMPILER BACKEND FORTRANSPORT TRIGGERED ARCHITECTURESMaster of Siene Thesis

Examiners: Prof. Hannu-Matti Järvinenand Prof. Jarmo TakalaExaminers and subjet approved byDepartment CounilOtober 15 2007

IIABSTRACTTAMPERE UNIVERSITY OF TECHNOLOGYDegree Programme in Information TehnologyJääskeläinen, Veli-Pekka: Retargetable Compiler Bakend for TransportTriggered ArhiteturesMaster of Siene Thesis: 57 pagesMarh 2010Major subjet: Software EngineeringExaminers: Prof. Hannu-Matti Järvinen and Prof. Jarmo TakalaKeywords: transport triggered arhiteture, ompilerEmbedded omputer systems an be found everywhere as the result of the needto develop ever more intelligent and omplex eletroni devies. To meet require-ments for fators suh as power onsumpiton and performane these systems oftenrequire ustomized proessors whih are optimized for a spei� appliation. How-ever, designing an appliation spei� proessor an be time-onsuming and ostly,and therefore the toolset used for proessor design has an important role.TTA Codesign Environment (TCE) is a semi-automated toolset developed at theTampere University of Tehnology for designing proessors based on an easily us-tomizable Transport Triggered Arhiteture (TTA) proessor arhiteture template.The toolset provides a omplete o-design toolhain from program soure ode tosynthesizable hardware design and program binaries.One of the most important tools in the toolhain is the ompiler. The ompileris required to adapt to ustomized target arhitetures and to utilize the availableproessor resoures as e�iently as possible and still produe programs with orretbehavior. The ompiler is therefore the most ompliated and hallenging tool todesign in the toolset.The work ompleted for this thesis onsists of the design, implementation andveri�ation of a retargetable ompiler bakend for the TCE projet. This thesisdesribes the role of the ompiler in the toolhain and presents the design of theimplemented ompiler bakend. In addition, the methods and benhmark results ofthe ompiler veri�ation are presented.

IIITIIVISTELMÄTAMPEREEN TEKNILLINEN YLIOPISTOTietotekniikan koulutusohjelmaJääskeläinen, Veli-Pekka: Retargetable Compiler Bakend for TransportTriggered ArhiteturesDiplomityö: 57 sivuaMaaliskuu 2010Pääaine: OhjelmistotuotantoTarkastajat: prof. Hannu-Matti Järvinen ja prof. Jarmo TakalaAvainsanat: transport triggered arhiteture, ompilerSeurauksena tarpeesta kehittää yhä älykkäämpiä ja monimutkaisempia laitteita,sulautettuja tietokonejärjestelmiä on nykyään kaikkialla. Nämä järjestelmät vaativatusein käyttötarkoitusta varten optimoituja mikroprosessoreita, jotta esimerkiksi vir-rankulutukseen ja suorituskykyyn liittyvät vaatimukset saataisiin täytettyä. Sovel-luskohtaisten prossessoreiden suunnittelu voi kuitenkin olla aikaa vievää ja kallista,joten prosessorien suunniteluun käytetyllä ohjelmistolla on tärkeä rooli.TTA Codesign Environment (TCE) on Tampereen teknillisellä yliopistol-la kehitetty kokoelma ohjelmistotyökaluja, joka perustuu helposti muokattavaan�transport triggered arhiteture� (TTA) -suoritinarkkitehtuurimalliin. TCE:ntyökalut tarjoavat puoliautomatisoidun prosessoreiden suunniteluvuon alkaenohjelmien lähdekoodista päätyen syntetisoitavaan prosessorikuvaukseen ja proses-sorilla suoritettavaan binäärimuotoiseen ohjelmaan.Yksi tärkeimmistä suunniteluvuon työkaluista on kääntäjä. Kääntäjän onmukauduttava räätälöityyn kohdearkkitehtuuriin, käytettävä prosessorin resursse-ja mahdollisimman tehokkaasti hyväkseen ja tuotettava ohjelma, jonka toiminta onoikea. Tämän takia kääntäjä on TCE:n monimutkaisin ja toteutukseltaan haastavintyökalu.Tämän diplomityön taustalla oleva työ koostui valmiiseen kääntäjäympäristöönsuunnitellusta ja toteutetusta TCE-kohtaisesta moduulista, sen testaamisesta jaoikean toiminnan varmentamisesta. Diplomityössä esitellään kääntäjän rooli TCE:ntyökaluketjussa ja kuvataan toteutetun kääntäjämoduulin arkkitehtuuri. Lisäksidiplomityössä kuvataan kääntäjän testauksessa ja suorituskyvyn mittauksessa käyte-tyt menetelmät tuloksineen.

IVPREFACEThe work for this thesis was done in the Department of Computer Systems atTampere University of Tehnology as a part of the Flexible Design Methodologiesfor Appliation Spei� Proessors (FlexASP) projet.I would like to thank prof. Jarmo Takala for giving me the hane to work onan interesting and hallenging projet, whih was a great learning experiene andgave me a good perspetive of the software and hardware development as a whole.I am also very grateful for Pekka Jääskeläinen, M.S., Pertti Kellomäki, Dr.Teh.,and Prof. Hannu-Matti Järvinen for their invaluable feedbak and ideas on how toimprove my work. I would also like to thank my oworkers at the TCE projet forreating an exellent working atmosphere and giving me the helping hand wheneverit was needed.Finally, I would like to thank my friends and family for their support throughoutmy studies and life.
Tampere, February 11 2010
Veli-Pekka Jääskeläinen

VCONTENTS1. Introdution . 12. Codesign Environment for Appliation Spei� Proessors 32.1 Appliation Spei� Proessor Design 32.2 Transport Triggered Arhiteture . 42.3 TTA Proessor Programming . 62.4 TTA Codesign Environment . 82.4.1 Automati Design Spae Exploration 82.4.2 Compiler . 102.4.3 Simulator . 102.4.4 Program Image and Proessor Generation 113. Compilers . 123.1 Compiler Struture . 123.1.1 Instrution Seletion . 143.1.2 Register Alloation . 153.1.3 Instrution Sheduling . 163.2 Compiler Retargeting . 163.3 Appliation Binary Interfae . 173.4 LLVM Compiler Infrastruture . 183.4.1 Compilation work�ow . 183.4.2 Program representation . 193.4.3 Code generator . 203.5 Bakend Implementation . 213.6 Target Desriptor Files . 234. Implementation . 284.1 TCE Data Strutures Used by the Compiler 284.1.1 Proessor Arhiteture Model . 284.1.2 Operation Set Abstration Layer 294.1.3 Program Model . 304.2 Minimum Target Mahine Con�guration 304.3 Compiler Toolhain . 314.4 Calling Convention . 324.5 TCE Bakend . 334.6 TCE Target Mahine . 344.7 Target Mahine Plugin . 354.8 Plugin Generation . 394.8.1 Register Set Desriptors . 404.8.2 Instrution Set Desriptors . 41

VI4.9 LLVMPOMBuilder . 464.10 Operation Maros . 475. Veri�ation and Benhmarking . 495.1 Testing Setup . 495.1.1 Test Mahine Arhitetures . 495.1.2 Test Cases . 505.2 Results . 516. Conlusions . 55Bibliography . 56

VIILIST OF ABBREVIATIONSABI Appliation Binary InterfaeADF Arhiteture De�nition FileAES Advaned Enryption StandardASIC Appliation-Spei� Integrated CiruitASP Appliation Spei� ProessorBEM Binary Enoding MapCFG Control Flow GraphCU Control UnitDAG Direted Ayli GraphDFG Data Flow GraphFU Funtion UnitGCC GNU Compiler ColletionGPP General Purpose ProessorGPR General Purpose RegisterHLL High Level LanguageHDL Hardware Desription LanguageILP Instrution Level ParallelismIR Intermediate RepresentationIU Immediate UnitJIT Just-In-Time CompilationJPEG Joint Photographi Experts GroupLLVM Low Level Virtual MahineMOM Mahine Objet ModelOSAL Operation Set Abstration Layer

VIIIPIG Program Image GeneratorPOM Program Objet ModelPSNR Peak Signal-to-Noise RatioRF Register FileRISC Redued Instrution Set ComputerSSA Stati Single Assignment FormTCE TTA-Based Codesign EnvironmentTPEF TTA Program Exhange FormatTTA Transport Triggered ArhitetureVHDL VHSIC Hardware Desription LanguageVLIW Very Long Instrution WordXML Extensible Markup Language

1
1. INTRODUCTION
Proessors for embedded systems often have strit requirements limiting their design.Fators suh as power onsumption, performane, and prodution osts plae muhstronger restritions for the proessor arhiteture when ompared to, for example,general-purpose proessors (GPPs) in desktop omputers. However, embedded sys-tems are typially required to run only a very limited set of programs, allowing theproessor design to be optimized for the appliation.Appliation Spei� Proessors (ASPs) are proessors that are ustomized forexeuting spei� software. They an, therefore, be muh more e�etive solutionsfor embedded systems than GPPs, but still retain more �exibility than an Applia-tion Spei� Integrated Ciruit (ASIC) designed for only one task. When an ASPis designed, the hardware and software parts of the system are developed simulta-neously by odesigning the proessor and software to bene�t from the tailoring ofthe system for the spei� appliation. The instrution set of an ASP is ustomizedby removing any instrutions that are not needed by the software and by addingustom instrutions that inrease performane of the system.Designing an appliation spei� proessor is a demanding and time onsum-ing task. A software toolset for designing Transport Triggered Arhiteture (TTA)ASPs alled TTA-based Codesign Environment (TCE) was implemented at Tam-pere University of Tehnology to hallenge this problem. TTA is a proessor designparadigm for designing ASPs based on a modular arhiteture template, whih al-lows ustomization of a proessor by adding and removing basi building bloks ofthe arhiteture template suh as funtion units, register �les, and transport buses.TCE provides a full toolset ontaining all tools required to odesign a TTA proessorand software for it.A ruial part of the toolset is the ompiler. Implementing a ompiler for austomizable arhiteture template is an espeially demanding task beause theompiler has to adapt to the available resoures in the ustomized target proessor.The TCE ompiler is implemented as a bakend for the Low Level Virtual Mahine(LLVM) ompiler framework whih provides the high-level language frontends andtarget independent analysis and optimization omponents. This thesis desribes therequirements, design, and veri�ation of a LLVM ompiler bakend for the TCEtoolset.

1. Introdution 2The thesis is divided into the following hapters. Chapter 2 introdues the TTAproessor arhiteture and desribes the method of programming TTAs. The hapteralso presents the TTA Codesign Environment and desribes the role of the ompilerin the toolset. Chapter 3 desribes the basi struture of typial ompilers and in-trodues basi ompiler onepts. In addition, the hapter gives an overview of theLLVM ompiler infrastruture and bakend framework. The design and implemen-tation of the TCE ompiler bakend is presented in Chapter 4. Chapter 5 ontainsthe ompiler test results and desribes the testing methods used for veri�ation andbenhmarking. Chapter 6 onludes the thesis.

3
2. CODESIGN ENVIRONMENT FORAPPLICATION SPECIFIC PROCESSORS
This hapter gives a brief overview of appliation spei� proessors (ASPs) andtheir design proess. In addition, the Transport Triggered Arhiteture (TTA) pro-essor arhiteture paradigm for designing ASPs is introdued. This hapter alsointrodues the TTA Codesign Environment (TCE), whih is a toolset for designingTTA proessors.2.1 Appliation Spei� Proessor DesignAppliation Spei� Proessors (ASPs) are proessors whih are ustom designedto run a spei� set of software e�iently. When the target appliation is wellde�ned with limited funtionality, a proessor an be designed with resoures thatare ustomized to bene�t the appliation. For example, any unneessary operationsan be removed from the operation set and highly speialized ustom operations anbe added to improve performane. This way the power onsumption, hip area, andmanufaturing osts an be minimized while still ful�lling the program exeutionspeed requirements.ASPs an have signi�antly better e�ieny when ompared to using generalpurpose proessors for the same task, but as a trade-o� the design proess an betime-onsuming and ostly. Therefore the hoie of an ASP arhiteture with a goodtoolset to assist and automate the design proess is important.In order to design an ASP, a toolset is required for modeling, evaluating, and om-piling software for the ustomized proessor arhiteture. Eah tool in the toolsetmust be able to adapt to di�erent arhiteture variations and, therefore, the arhi-teture design spae has to be limited to an arhiteture template. The templatedesribes general harateristis of the proessor arhiteture, but an allow us-tomization of di�erent resoures, suh as the instrution set, register �les and theinteronnetion network.When an arhiteture template is used, proessors an be designed by means ofdesign spae exploration. Design spae exploration is a proess where a proessoris designed iteratively. First, an initial arhiteture is designed and evaluated witha simulator. Based on the evaluation results, the design is then improved and re-evaluated until a satisfatory design is found. The proess an be done manually

2. Codesign Environment for Appliation Spei� Proessors 4or by using varying degrees of automation with a toolset apable of improving andevaluating arhitetures automatially.2.2 Transport Triggered ArhitetureAn important way to improve program exeution speed is to take advantage of In-strution Level Parallelism (ILP). ILP is a term for the �ne grained independenyof operations, whih allows multiple operations to be exeuted simultaneously. Su-persalar proessor arhitetures, suh as modern desktop CPUs exploit ILP withinthe proessor hardware by deteting the operation dependenies during run time.Operation exeution order an then be reorganized, and multiple operations shed-uled to be exeuted in parallel. However, this approah requires additional logi inthe proessor hardware to detet operation dependenies and alloating proessorresoures for the exeuted operations.Very Long Instrution Word (VLIW) is a proessor arhiteture whih utilizesILP by parallelizing instrutions at ompile time [1℄. In VLIW arhiteture one in-strution onsists of multiple operations whih are statially sheduled to proessorexeution units by the ompiler. Proessor hardware is therefore freed from thedependeny detetion logi, reduing the hardware omplexity and lowering poweronsumption. In VLIWs, the interonnetion network between exeution units andother proessor resoures needs to be designed for all possible onurrent data trans-ports. The growing omplexity of the interonnetion network therefore limits thesalability of VLIWs.Transport Triggered Arhiteture is a proessor arhiteture template similar tothe VLIW arhiteture. TTA takes the VLIW idea of moving omplexity fromthe hardware to the ompiler even further, by also assigning data paths used byinstrutions at ompile time. This is done by programming the individual datatransports between proessor omponents instead of the traditional approah ofprogramming whole operations. In TTAs, the operations are exeuted as side e�etsof the data transports. Beause the data paths are assigned at ompile time andthe ompiler is aware of the limitations, the interonnetion network an be keptrelatively simple when new resoures are added. [2℄The stati sheduling of data transports has some drawbaks when ompared tosupersalar arhitetures. The ode density is lower, beause more bits are requiredto enode data transports to a TTA instrution than enoding an operation in atraditional operation triggered arhiteture. Additionally, TTA performane is verydependent on the ompiler quality, and sine all ILP logi is in the ompiler it anbeome very omplex.[3℄

2. Codesign Environment for Appliation Spei� Proessors 5

Figure 2.1: Module diagram of a simple TTA proessor.TTA Proessor Organization. One of the main goals of TTA is to allow easyustomization of proessors with a templated arhiteture design. TTAs are builtfrom omponents that an have pre-existing hardware implementation. Componentsalled sokets and buses form the interonnetion network whih onnets four dif-ferent types independent units providing resoures for operation exeution. Theseunit types are funtion unit (FU), register �le (RF), immediate unit (IU) and ontrolunit (CU). Figure 2.1 shows a omponent diagram of a simple TTA proessor withtwo funtion units, one register �le, one immediate unit and a ontrol unit.Funtion units are the exeution units of a TTA proessor. One funtion unitontains logi to exeute one or more operations. These operations an be simpleoperations suh as addition of integers, or more omplex operations that do ompu-tation spei� to the appliation that the arhiteture is ustomized for. Usually atleast one of the funtion units in a TTA proessor is a speial load and store unitthat an aess data memory. Funtion units read and write operands using inputand output ports that are onneted to the interonnetion network. The operationset of a TTA proessor an be ustomized by adding funtion units that provide thedesired set of operations.Register �les are units that ontain arrays of registers with same bit width. Regis-ters are used for storing temporary values suh as operation operands for fast aessinside the proessor. Registers are also used for speial purposes suh as storingthe stak pointer and funtion return value. A TTA proessor an have multipleregister �les with di�erent bit widths. Register �les an have multiple input andoutput ports to allow multiple register aesses in one instrution yle.Immediate units ontain speial registers to store long onstant values that annot be enoded in instrutions as literal onstant values.A TTA proessor ontains a ontrol unit whih is responsible for ontrolling the

2. Codesign Environment for Appliation Spei� Proessors 6proessor operation. It fethes and deodes instrutions and generates signals toexeute them. The ontrol unit also ontains ontrol �ow operations so it an alsobe seen as a speial funtion unit.Sokets and buses form the interonnetion network that is utilized to transportdata between the units. The number of buses limits the number of onurrent datatransports in a TTA proessor. One bus an omplete one data transport in eahinstrution yle between unit ports that are onneted to it by sokets. Soketshave a diretion whih determines if the ports onneted to it an read or writethe transport bus. Connetions between sokets and buses are usually optimized toontain only the onnetions that are needed for fast proessor operation. A fullyonneted interonnetion network with multiple buses onneted to all ports willusually have poor utilization and high ost in terms of hip area.2.3 TTA Proessor ProgrammingTraditional proessors are programmed by de�ning operations and their operands.For example, in the assembly language of a traditional RISC arhiteture, simpleoperation like addition of two operands in registers r1 and r2 to register r3 mightlook like this:add $r3, $r1, $r2The RISC proessor will generate the required signals to exeute the operation.In ontrast, TTA proessors are programmed by de�ning the data transports thatare required to perform the desired behavior. The atual operations are exeutedas side e�ets of the data transports when a data transport ours to an operationtriggering port of a funtion unit.The same example in TTA assembly would look something like this:r1 -> add.1r2 -> add.2add.3 -> r3To exeute the add operation, three data transports alled moves are de�ned.The �rst move de�nes a data transport from register r1 to the input port 1 of afuntion unit ontaining the add operation. The seond move de�nes another movefrom register r2 to the input port 2 whih triggers the exeution of the add operation.Finally, the result is moved from the output port of the funtion unit to the registerr3. This example is sequential TTA ode. Operation latenies are not yet taken toaount, the moves are not parallelized and the required target resoures are not yetassigned.

2. Codesign Environment for Appliation Spei� Proessors 7To assemble a real TTA program for a spei� target TTA proessor, the programmust be sheduled for the target arhiteture and the proessor resoures must bealloated. Registers must be bound to spei� registers in the register �les of thetarget TTA. Operations must be also bound to spei� funtion units of the targetarhiteture ontaining the orresponding operations. Finally, the moves must besheduled while onsidering operation latenies and parallelized to spei� transportbuses to exploit ILP.Sheduling TTA programs for target arhiteture. The following is a smallsequential TTA program with a onditional jump at the end. The syntax �!bool� inmove 12 denotes that the move is onditional and will our only if the value in theregister �bool� is FALSE (binary value zero). This program also ontains onstantliteral values whih an be enoded in the instrutions as short immediates.1: 1 -> r1 [initialize variables in registers℄2: 0 -> r23: r1 -> add.14: r2 -> add.25: add.3 -> r26: r1 -> eq.17: 1024 -> eq.28: eq.3 -> bool [bool = boolean register℄9: r1 -> add.110: 1 -> add.211: add.3 -> r112: !bool 3 -> jump.1 [jump to 3: if bool equals zero℄The following TTA program is what this example might look like after alloatingresoures and sheduling moves to the buses of a target TTA. This parallel TTAprogram is target-dependent and an be assembled only for the target TTA it wasparallelized for.1: 1 -> RF1.1 0 -> RF1.22: RF1.1 -> FU1.add.i1 RF1.2 -> FU1.add.i23: FU1.add.o1 -> RF1.2 RF1.1 -> FU2.eq.i14: 1024 -> FU2.eq.i2 1 -> FU1.add.i15: FU2.eq.o1 -> RF2.1 RF1.2 -> FU1.add.i26: FU1.add.o1 -> RF1.1 !RF2.1 2 -> GCU.jump.1Registers r1 and r2 are alloated to registers 1 and 2 in a general purpose register�le RF1. Boolean register bool is alloated to register 1 of a 1-bit register �le RF2.

2. Codesign Environment for Appliation Spei� Proessors 8Operations are also bound to funtion units ontaining the orresponding operations,and the operand ports are spei�ed to orrespond the orret operand ports of theoperations. Moves are then sheduled to two buses of the target TTA.The onditional move in instrution 6 is done by utilizing a register guard onthe seond bus. This bus must therefore have a guard that an exeute the moveonditionally depending on the value of register 1 in RF2.The instrution sheduler in a TTA ompiler must also take operation lateniesinto aount. Results an be read only when the funtion unit has done the alu-lation and the result is ready. Operation lateny determines the number of ylesrequired by the funtion unit to ompute the result of the operation.2.4 TTA Codesign EnvironmentTTA-based Codesign Environment (TCE) is a set of tools developed at TampereUniversity of Tehnology for designing and programming TTA proessors. The goalof the TCE projet is to provide an easy to use toolhain for TTA proessor design,aiming to minimize the time and ost of design by automating the design proessas muh as possible [4℄.The TCE proessor design toolhain ontains all tools required to design andsimulate TTA proessors and programs. The proessor design starting point isusually the soure ode for an appliation, and a set of performane requirementsand design limitations that must be met by the designed proessor. The proessor isdesigned with an iterative design spae exploration proess. The exploration beginswith an initial arhiteture ating as a starting point for the proessor design. Theprogram soure ode is ompiled for the proessor arhiteture, and a model of theompiled program is simulated on a simulator for the proessor arhiteture. Thesimulator produes a trae of the program exeution, whih is examined to improvethe arhiteture design. This proess is repeated until a satisfatory design is found.The design spae exploration an be done either manually, or at di�erent levelsof automation. In the manual design proess, the di�erent tools of the proessordesign toolhain are used manually, and the proessor design is modi�ed by hand.The fully automati design spae exploration has only the program soure ode andthe design requirements as input, and does not require any user interation for theexploration proess. A user's guide to di�erent TCE tools and the design proessan be found in the TCE User Manual [5℄.2.4.1 Automati Design Spae ExplorationThe automated design spae exploration is driven by the Explorer tool. The Ex-plorer is a highly modular tool whih an be programmed to explore the design spae

2. Codesign Environment for Appliation Spei� Proessors 9

Figure 2.2: TCE design �ow.aording to any user riteria. The design spae explorer works in onjuntion withthe TCE ompiler and simulator, whih are used to test di�erent arhiteture on-�gurations. The explorer itself is responsible for estimating the ost of the di�erenton�gurations, and modifying the arhiteture to di�erent points of the design spaein order to �nd an improved design. The design ost is measured in terms of thehip area required to implement the proessor, and the total energy onsumption torun the desired program. The proessor performane is measured as the number oflok yles required to run the program. The automated exploration design �ow isillustrated in Figure 2.2.The exploration begins with an initial proessor arhiteture model, whih an befor example the minimal required on�guration needed by the ompiler to ompilearbitrary programs. The soure program is ompiled for the initial arhiteture.The ompiler produes a model of a parallel TTA program whih an be simulated.The simulator is invoked to simulate the parallel program model on a model of the

2. Codesign Environment for Appliation Spei� Proessors 10proessor arhiteture. The simulator result is a simulation trae database. Thetrae ontains detailed information about the program simulation, suh as the totallok yle ount of the simulation and the utilization of di�erent arhiteture om-ponents. The explorer will then generate a new on�guration point in the exploreddesign spae whih is tested. The proess of exploring di�erent on�gurations in thedesign spae is repeated until the user de�ned riteria is ful�lled.In order to estimate the power onsumption and hip area, the explorer has togenerate an implementation model of the proessor. The implementation is gener-ated by hoosing implementations for the arhiteture omponents from a databaseof pre-existing hardware omponents with known harateristis.When the �nal on�guration is found, it an be prepared for implementation.TCE inludes tools for generating a HDL desription of the proessor from theproessor arhiteture and implementation models. The proessor implementationmodel is also used for generating a bit image of the ompiled program model.2.4.2 CompilerThe TCE ompiler is the subjet of this thesis. The omplier is a retargetable odegenerator, whih an adapt to di�erent arhitetures designed with the TCE ar-hiteture template. It gets the program soure ode and a proessor arhiteturemodel as input. The output is a model of a parallel program for the target pro-essor arhiteture. The design and implementation of the ompiler is disussed inChapter 4.2.4.3 SimulatorIn order to verify and benhmark an arhiteture on�guration, the program exeu-tion must be simulated on a software model of the proessor. The toolset ontainsa proessor simulator with two simulation engines for this purpose. The simulationengines are a yle-aurate interpretive simulator, and a faster but less aurateompiled simulator.The interpretive simulator simulates an arhitetural model of the proessor. Thesimulation model ontains only arhitetural omponents, whih are visible to theprogrammer. However, the simulation is yle-aurate, and all arhitetural om-ponents ontain orret data on eah yle [6℄. The interpretive simulator enginesimulates an assembly-level model of the program, not the exeution of an atualbit image of the program. The interpretive simulator is useful for veri�ation of anarhiteture with lok yle level traing and debugging of the program exeution.The ompiled simulator engine generates exeutable simulation ode from a paral-lel program model ompiled for the target proessor [7℄. Individual lok yles and

2. Codesign Environment for Appliation Spei� Proessors 11arhiteture omponents are not simulated. The simulation ode also has limitederror detetion apabilities ompared to the interpretive simulation. The reduedsimulation overhead results in muh faster simulation, whih is useful for quikbenhmarking of a target arhiteture.2.4.4 Program Image and Proessor GenerationThe �nal step in the TCE toolhain is the generation of a proessor implementationdesription whih an be synthesized for the hosen hardware tehnology, and thegeneration of a program bit image whih an be exeuted on the proessor.The proessor implementation desription is generated from the arhiteture andimplementation models of the proessor with the Proessor Generator [8℄ tool. Thetool produes a VHDL hardware desription of the proessor.In order to generate a program image, a Binary Enoding Map (BEM) is generatedfor the proessor implementation. The BEM ontains the information required toenode instrutions for the proessor. A Program Image Generator (PIG) [8℄ tooluses the BEM to generate a bit image from a parallel program model ompiled forthe proessor.

12
3. COMPILERS
A ompiler is a software system that translates programs between soure and tar-get representations, typially onverting programs written in a high level language(HLL) to a target mahine spei� representation. Compilers an be implementedusing a ompiler infrastruture whih provides modular and reusable omponentsfor ompiler implementation.This hapter introdues general ompiler onepts and the typial struture ofompilers. In addition, the Low Level Virtual Mahine (LLVM) ompiler infrastru-ture, whih is the basis of the TCE ompiler is introdued.3.1 Compiler StrutureTypially, ompiler infrastrutures have modular arhitetures where di�erent pro-gramming language frontends and ompilation target bakends an be added asindependent modules as illustrated in Figure 3.1. In order to ahieve modularity,the ompiler must have a well de�ned Intermediate Representation (IR) of programsthat di�erent modules use to ommuniate programs between ompilation phases.Intermediate representation. An IR of a ompiler is a data struture that rep-resents the ompiled program to the ompiler. Intermediate representation uses anintermediate language that targets an abstrat target mahine. The intermediatelanguage onsists of a virtual operation set of primitive operations. The virtual oper-ation set and the struture of the IR are designed to aid in the analysis, optimizationand ode generation for target mahines.In generi ompiler frameworks that are not designed for a spei� target arhi-teture, the intermediate language usually has a virtual instrution set of primitiveoperations that are generi to most proessors. The virtual instrution set an alsohave abstrat operations that are not spei� to any mahine, but represent a target-dependent operation sequene suh as a funtion all or dynami memory alloationfor temporary values. The abstrat representation of these operations allows high-level optimizations to be done in the ompiler middle-end, but leaves the low levelode generation the responsibility of the target spei� bakend.The intermediate language operations usually perform operations on operandsstored in virtual registers. The number of virtual registers available in the abstrat

3. Compilers 13

Figure 3.1: Struture of a typial ompiler.IR mahine is usually very high or pratially unlimited.Compilers often use more than one form of intermediate representation. Di�erentIRs are used for di�erent phases of the ompilation that are easier to perform onertain type of IR than another. For example, some optimizations and programanalysis require a graph representation of the program where program operationsand operands are represented as nodes of a tree graph exposing the program data�ow. On another hand, some optimizations and ompilation phases are muh easierto implement using a stati single assignment form (SSA) of the program. In SSAevery variable is assigned only one, whih simpli�es the analysis of variables. If thesame variable is assigned multiple times it is split to multiple versions that de�ne anew variable. [9℄Frontend. A ompiler frontend is responsible for parsing programs written infrontend-spei� HLL and translating it to the IR of the ompiler. In a standardorganization, frontend struture is divided to three main parts [10℄. First, lexialanalysis is performed on the input data, whih tokenizes the input string of har-aters to syntax spei� tokens of the programming language struture, suh as akeyword or a parenthesis. Next, the parser performs syntax analysis on the tokenstream, detets syntax errors and onstruts a parse tree of the program. Finally,the semanti analyzer heks the program for stati-semanti validity and an IRof the program is onstruted. The IR produed by a frontend is usually sourelanguage independent.Middle-end. The ompiler middle-end is the soure language and target mahineindependent part of the ompiler. Middle-end is responsible for analyzing and opti-mizing the IR before passing it to a target bakend. Compiler middle-ends usuallyperform data and ontrol �ow analysis on the IR. The resulting data �ow graph(DFG) ontains interdependenies between operations. Control �ow graph (CFG)ontains the basi blok struture of the program and identi�es ontrol �ow transfers

3. Compilers 14

MUL

MAC

LDW ADD

load

reg

regreg

a d d

reg

reg

regreg

reg

reg

regreg

reg

a d d

mul
mul

reg

Figure 3.2: Four instrution patterns available for instrution seletion.between basi bloks. A basi blok is a sequene of instrutions that has a singleentry and exit point, whih an be treated as a single entity when the ontrol �owof a program is analyzed.These graphs are used as a basis for di�erent optimizations done in the middle-end. Optimizations are usually implemented as modules, so that the sequeneof optimizations an be ustomized. The resulting optimized IR is still target-independent, but the sequene of di�erent optimizations an be hosen to bene�tsome spei� target.Bakend. Compiler bakends are target spei� ode generators, whih translatethe target independent IR to target spei� ode. The most important tasks fora bakend is to perform instrution seletion, register alloation and instrutionsheduling on the IR. Bakends an also perform target spei� optimizations. Theoutput of a ompiler bakend is usually assembly ode or binary objet ode for thetarget mahine.3.1.1 Instrution SeletionAn instrution seletor maps IR operations to operations supported by the targetproessor. A single IR operation an be expanded to a sequene of target operationsor an emulation funtion all if an IR operation is not inluded in the operationset of the target mahine. In the opposite situation, the target mahine might haveoperations that ombine a sequene of IR operations to a single target operation.Instrution seletion is usually done on a DFG representation of the IR. Aninstrution seletor has tree patterns of the target mahine instrutions de�ning thebehavior of the instrutions to perform instrution seletion on a DFG. The patternsan also be assoiated with a ost. The task of instrution seletor is to over the

3. Compilers 15
mul

a d d

load

reg reg

reg

reg

mul

a d d

load

reg reg

reg

reg

LDW

MUL

ADD

MAC

LDWFigure 3.3: Two possible ways of overing a simple DFG with ADD, LDW, MAC and MULpatterns.program DFG using the mahine instrution patterns. There are usually multipledi�erent ways to over even a very simple DFG. In Figure 3.2 there are four di�erentinstrution patterns that are available to over a simple subgraph of a program inFigure 3.3.A simple instrution seletion method is to rewrite the IR operation tree bymathing subtrees with the instrution patterns of the target mahine. In the ex-ample in Figure 3.3, the only available pattern to math the load operation subtreeis the LDW pattern. The remaining subtrees are mathed from bottom to up. Thereare two possible ways to over the add operation as illustrated in Figure 3.3. Usually,an instrution seletor would try to math a subtree starting from the pattern thatovers the largest subtree. In this example, the MAC pattern is mathed beforethe ADD pattern and the remaining graph is overed with a MAC operation. Ifthe instrution seletion patterns are assoiated with a ost, a linear time dynamiprogramming algorithm an be utilized to �nd the optimal solution [11℄.3.1.2 Register AlloationA register alloator maps the variables in the IR to real registers in target hardware.The virtual register utilization in the program is �rst analyzed to determine liveranges of the values in the registers. The live range of a value in register determineswhen it is safe to assign a register for a new variable. If the number of simultaneouslive values in virtual registers is greater than the number of physial registers, theregister alloator must spill values to memory. The register alloator an do thisby inserting spill ode whih stores a live register value to memory. The registeran then be used for a new variable, and the old variable an be restored later frommemory when it is needed again.

3. Compilers 16Spilling register values auses load and store overhead, so the task of a registeralloator is to minimize register spilling by maximizing the use of physial registersfor frequently used variables. Register alloation is a omputationally intensive NP-omplete [10℄ problem and there is no known e�ient algorithm to �nd the optimalsolution.3.1.3 Instrution ShedulingProessors an be pipelined to improve their instrution throughput. An instrutionpipeline splits the exeution of an instrution to a sequene of independent steps.Multiple instrutions an therefore be proessed in parallel by exeuting di�erentstages of instrutions at the same time in the pipeline. However, pipelining intro-dues hazards to the omputation when simultaneously exeuted instrutions haveinterdependenies. Hazards are usually avoided by stalling the pipeline.Instrution sheduling is a ompiler optimization whih reorganizes the exeu-tion order of instrutions to avoid pipeline stalls for improving performane. Somemahines also expose instrution pipeline resoures to the ompiler and expet theompiler to take are of operation timing issues by always sheduling instrutions.Instrution sheduling is espeially important for VLIWs and TTAs. Both arhi-tetures have programmer visible operation lateny that has to be taken into aountby the ompiler. Instrution sheduling is therefore always needed for VLIWs andTTAs to maintain orret behavior of programs. On TTAs, the quality of the in-strution sheduling is also very important to the program exeution performane.In TTA proessors individual funtion units an be pipelined with resoures thatare visible to the ompiler. Other proessor resoures suh as buses, guards andports are also visible to TTA ompilers. Instrution sheduling is therefore a moreomplex and important problem for TTA proessors than for example supersalararhitetures. A TTA instrution sheduler has to alloate proessor resoures toexeuted instrutions and take operation latenies into aount while paking max-imum number of moves to instrutions to improve ILP. More information on TTAinstrution sheduling an be found in [12℄.3.2 Compiler RetargetingThe easiest way to implement a ompiler for a proessor arhiteture is to imple-ment a bakend for an existing ompiler infrastruture. Compiler infrastruturesusually aim to minimize the manual work required for writing new bakends. Bak-ends are typially implemented using a framework whih provides a formal mahinedesription language. The purpose of mahine desription languages is to apturethe ompilation related details of the proessor and allow reuse of generi bakend

3. Compilers 17ode.Modeling languages vary on the approah they take to model a proessor. Behav-ioral modeling languages suh as ISDL are more ompiler-oriented and allow easierimplementation of the bakend but require more knowledge of ompilers. Struturalmodeling languages suh as MIMOLA desribe the struture and arhitetural de-tails of the proessors and are therefore easier for users that are not familiar withompilers. A good overview of ustomizable proessor arhiteture desription lan-guages an be found in [13℄. Depending on the ompiler framework and the modelinglanguage, bakend generation an be fully automated from the modeling languagedesription, or might require some parts of the bakend to be manually programmed.Stati ompiler bakends are limited to a single target proessor or a family ofsimilar proessors. The bakends have hard-oded models of the target proessorarhiteture, and exat properties of the proessors must be known when imple-menting the bakend. This poses a problem for ustomizable proessor arhiteturetemplates where the proessor is designed for a spei� task. Implementing a newbakend for eah new arhiteture would be time-onsuming and it would make fastproessor prototyping and e�etive design spae exploration impossible.A solution presented in this thesis to this problem is to implement a dynamiallyretargetable bakend, whih only ontains general aspets of the arhiteture tem-plate as a hard oded model. The atual target proessor model is given as an inputfor the bakend at runtime, and the bakend adapts to the properties of the targetproessor on�guration.3.3 Appliation Binary InterfaeA ompiler bakend is responsible for implementing ode generation orrespondingto the target spei� appliation binary interfae (ABI), whih de�nes the low-levelinterfae of program omponents.An important aspet of an ABI is the memory organization of the target ar-hiteture. To ahieve ompatibility between di�erent program omponents, theompiler bakend has to implement a onsistent memory alloation sheme de�nedin the ABI. A bakend follows the ABI onventions, whih de�ne memory struturedetails suh as the size and alignment of di�erent data types in memory, and thestruture of the all stak.The all stak is a data struture whih stores information about ative funtionsin the program in stak frames. A stak frame has a onsistent struture withprede�ned areas for funtion return address, funtion parameters, loal variablesand similar data spei� to the state of an individual funtion invoation. Thisallows the funtion to aess the loal state data using a stak pointer, whih pointsto the end address of the stak frame of the ative funtion.

3. Compilers 18Another important part of the ABI is the alling onvention. Calling onventiondetermines how the funtion arguments are passed and how the return value is re-trieved when a all to a funtion is invoked. The task of the bakend is to onvert theabstrat all and return instrutions to ode sequenes whih implement the allingonvention. On the aller side, a ode sequene inserted to �rst store the funtionparameters to argument registers or the all stak, and another ode sequene toretrieve the return value after the all has returned. On the allee side, the bakendgenerates a funtion prologue to read the funtion arguments and an epilogue tostore the return value in appropriate loations before returning from the funtionall.The alling onvention also de�nes the responsibility of saving and restoring reg-isters whih must preserve their values. Caller saved registers are saved to the stakby the alling funtion before the funtion all and restored after the all returns.Callee saved registers are saved in the alled funtion prologue and restored in theepilogue before the funtion returns.3.4 LLVM Compiler InfrastrutureLow Level Virtual Mahine [14℄ is an open soure ompiler infrastruture based onlow level virtual mahine ode representation of ompiled programs. The goal of theLLVM projet is to provide a robust platform for ompiler development using a oderepresentation whih allows reuse of ompiler omponents aross di�erent targets.LLVM has a modular design, allowing new language frontends, target mahine bak-ends, and optimizations to be easily inorporated in the existing framework. LLVMalso aims to provide a �exible framework for program analysis and transformation,inluding ompile-time, link-time, and run-time optimization and pro�ling [15℄. Itis therefore well suited for developing a ompiler and researhing new optimizationmethods for TTA proessors.LLVM is the ompiler infrastruture hosen for TTA Codesign Environment(TCE). This setion serves as a basis for the TCE ompiler implementation pre-sented in Chapter 4.3.4.1 Compilation work�owLLVM ompilation work�ow begins with ompiler frontends for di�erent soure lan-guages. Frontends emit bitode whih is linked together by a bitode linker. Thebitode linker performs link-time optimizations, inluding inter-proedural analysisand optimization. The linked bitode an then be optimized by an o�ine optimizer.Finally, a ode generator writes the target assembly or binary mahine ode fromthe optimized IR.

3. Compilers 19
Bytecode

object f i les

Bytecode
Libraries

Linker
IPO / IPA

Compiler FE 1

Compiler FE N

LLVM Bytecode

Offline
Optimizer

Code Generator Machine codeFigure 3.4: LLVM stati ompilation work�ow.LLVM also allows native exeution of bitode using Just-In-Time (JIT) ompilerwith runtime pro�ler and optimizer. However, the runtime optimizer and JIT annotbe used when LLVM is used as a stati ross-ompiler generating ode for non-nativemahines. Figure 3.4 shows the stati ompilation work�ow, when LLVM is used asa stati ross-ompiler.The most popular of the urrent frontend implementations is a GNU CompilerColletion (GCC) [16℄ based LLVM-GCC frontend. The LLVM-GCC frontend in-ludes support, among others, for C and C++ programming languages.Optimization, analysis, and ode generation are implemented as passes in theLLVM ompiler. Eah pass implements one analysis or transformation of the IR.LLVM has di�erent types of passes working on di�erent sopes, ranging from generalmodule passes transforming or analyzing whole ompilation units at a time to basiblok passes that are limited to sope of a single basi blok. Passes are organizedwith a PassManager, whih manages pass dependenies and the exeution order ofpasses. All passes use the LLVM IR as input and output.3.4.2 Program representationLLVM ode representation is based on a soure language and target mahine inde-pendent RISC-like virtual instrution set. The virtual instrution set also inludesinstrutions that expose high level language features to the ompiler middle-end fore�etive optimization. LLVM ode an be represented as human readable assemblylanguage, as on-disk binary bitode and as in-memory objet model IR, whih areall equivalent and use the same virtual mahine as an intermediate target mahine.At a high level, LLVM programs are omposed of modules whih are the ompila-tion units of the LLVM ompiler. Modules onsist of funtions, global variables andsymbol table entries. LLVM funtions onsist of basi bloks whih in turn ontaininstrutions. An instrution ontains an opode and a vetor of operands.The LLVM operands are strongly typed. The type system inludes primitive typesfor �xed point integers with di�erent bit-widths (i1, i8, i16, i32, ...), and �oatingpoint types of varying preision (f32 , f64, ...). The type system also ontains moreabstrat types, suh as ode labels, pointers and di�erent kinds of strutured types.

3. Compilers 20
Instruct ion
Select ion

Machine
SSA Optimizat ions

Register
Allocator

Instruct ion
Scheduler

Code
Emission

LLVM
Target
Code

Target Independent

Target
Specific

Target
SpecificFigure 3.5: Basi LLVM ode generator layout [18℄.The primary representation of LLVM ode is in Stati Single Assignment (SSA)form [15℄. The LLVM SSA form uses a virtual register set that ontains an in�nitenumber of typed virtual registers. Full spei�ation of the LLVM language an befound in the LLVM Language Referene Manual [17℄.3.4.3 Code generatorLLVM provides a framework for ode generator implementation. The frameworkonsists of multiple passes that have LLVM IR as input and target mahine ode asoutput. The high-level struture of a basi LLVM ode generator is illustrated inFigure 3.5.The �rst ode generation phase is instrution seletion. The instrution seletionproess starts with building of an initial instrution seletion DAG, followed by DAGoptimizations to simplify it. The seletion DAG operand types are then legalized bytransformations that onvert any unsupported types to types whih are supportedby the target mahine. After the legalize stage and additional optimizations, theseletion DAG is ready for the atual instrution seletion. The �nal stage of theinstrution seletion phase is formation of an SSA-representation of the intermediatemahine ode.Instrution seletion is followed by three phases, whih have target independentimplementations available in the LLVM framework. First, the mahine ode SSAan be optimized with optional SSA-based optimizations. The SSA is then regis-ter alloated, transforming the virtual registers to onrete registers in the targetmahine. LLVM libraries inlude multiple di�erent built in register alloation algo-rithms that an be used. After register alloation, funtion prologue and epilogueode is inserted, the instrutions are sheduled and late mahine ode optimizationsare done to ready the program for ode emission. The ode emission is typiallydone by an assembly writer, whih produes assembly ode for the target proessor.

3. Compilers 213.5 Bakend ImplementationBakends utilizing the LLVM ode generator framework are implemented as targetmahines of the LLVM framework. The target mahine interfae allows ustomimplementation of all di�erent ode generation related passes. However, the odegenerator framework provides implementations for instrution seletion and registeralloation, whih an be used by desribing the related properties of the targetmahine using LLVM lasses.Target mahine. Target mahine enapsulates all properties and ode genera-tion methods of a target mahine behind one interfae. The LLVM ode generatorframework uses the interfae to provide a bakend for the target mahine. Codegenerator passes are also reated through this interfae allowing full ustomizationof the ode generator.Data layout. Data layout of a target mahine desribes the endianess and pointersize as well as sizes and alignments of di�erent data types in the target mahinememory.Frame info. Frame info desribes the basi properties of the target mahine stakand stak frame layout. It also holds information about the diretion of stak growthin the memory and stak frame alignment.Register set. Target mahine registers and register types are de�ned in the targetmahine register set. It desribes all registers of the target mahine and propertiesof di�erent register types. The register set implements TargetRegisterInfo interfae,whih ontains various methods utilized by the ode generator to handle registerand stak frame aess. TargetRegisterInfo is also responsible for emitting prologueand epilogue ode into funtions.Instrution set. Target mahine instrution set ontains desriptors of all sup-ported instrutions and de�nes their operand types. The operand types de�ne di�er-ent memory addressing modes and immediate operands. Register operand types arede�ned by referring to the register set. Instrution desriptors de�ne the followingproperties of supported target instrutions:
• Input and output operand lists, de�ning the operand types and number ofoperands,
• Instrution pattern whih de�nes the behavior of the instrution as a DAG ofLLVM instrutions,

3. Compilers 22
• Additional prediates and onstraints for mathing the instrution pattern,
• An assembly string template for printing the instrution as target assemblyode,
• List of registers impliitly used and modi�ed,
• Target-independent �ags that de�ne properties suh as if the instrution isommutable or if it may read or write memory, and
• Target-spei� �ags and properties.One target mahine instrution requires typially more than one desriptor todesribe the di�erent ombinations of operand types it an have and di�erent in-strution patterns it an be mathed with.Instrution seletor. LLVM provides a base implementation for an instrutionseletor. A skeleton of the instrution seletor is implemented as base lasses in theLLVM ode generator library and part of the instrution seletor an be automat-ially generated from the instrution desriptors. Some of the instrution seletormethods have to be manually implemented beause the behavior of all instrutionsannot be fully expressed with the instrution desriptors.The manually implemented parts of the instrution seletor inlude a legalizephase whih onverts unsupported types and operations to ones supported by thetarget mahine. The legalize phase an either promote, expand, or implement austom lowering for operations that are not supported. If an operation is supportedfor larger operand types, the unsupported operands an be promoted to supportedtypes. Expand breaks an LLVM instrution to a ombination of other instrutionsthat perform the same operation. If promotion or expansion is not su�ient, thetarget legalizer an implement a ustom ode generation method for the unsupportedoperation.The instrution seletor also inludes methods to support target alling onven-tions. Di�erent alling onventions an be implemented by writing methods thatgenerate ode for passing arguments and handling return values of funtion alls.Register alloator. LLVM ode generator inludes multiple register alloatorsthat implement di�erent register alloation algorithms as ode generator passes.The register alloator implementations are target independent and do not requireany target spei� modi�ations. They utilize the target mahine interfae to aesstarget register set model and use virtual ode generation methods implemented inthe target mahine to generate ode for spilling values to memory.

3. Compilers 23Target assembly information and assembly printer. LLVM ontains a par-tial implementation of an assembly printer pass. The assembly printer an be utilizedby providing information about the target assembly diretives and by implementingrequired assembly printing methods manually. Part of the assembly printing meth-ods an be automatially generated from the assembly string templates de�ned inthe target instrution desriptors.3.6 Target Desriptor FilesOne of the goals of the LLVM projet is to minimize the manual programming workrequired to implement a new bakend. A bakend has to model the target mahinewhih inludes repetitive desriptions of di�erent target arhiteture resoures. Inorder to make the target arhiteture modeling easier, LLVM inludes a generalpurpose TableGen tool for proessing reords of domain-spei� information. Themain use of the TableGen tool is the LLVM ode generator, whih allows part ofthe bakend C++ ode to be generated from target desriptor �les whih ontainreords of a target mahine properties. The target desriptor �les an be proessedby target desription TableGen bakends whih generate ode for essential parts ofthe bakend.The automatially generated ode inludes data strutures that are required bythe ode generator framework to handle target mahine instrutions and registers,as well as methods for instrution seletion and assembly ode emission.TableGen �les onsist of lass and de�nition reords. Classes are the abstratreords that desribe the struture of onrete reords belonging to the same on-eptual lass. New TableGen lasses an be derived from existing lasses inheritingtheir properties. De�nitions are the onrete reords that de�ne the properties ofa domain-spei� objet. TableGen �les an also ontain multilasses, whih allowinstantiation of group of lasses in a single reord resulting in multiple de�nitions.The following part of this hapter is an introdutory desription of some of the keyelements in typial target desriptor �les. TableGen has a versatile and expressivesyntax, whih is not overed by this thesis. A omprehensive explanation of theTableGen syntax an be found in [19℄. The TableGen target desriptor �le bakendis doumented in [20℄.

3. Compilers 24Register is the base lass for register reords. It ontains attributes de�ningthe register properties and relationship to overlapping registers. The Register lassde�ned in the target desriptor TableGen bakend has the following struture:lass Register<string n> {string Namespae = "";string AsmName = n;int SpillSize = 0;int SpillAlignment = 0;list<Register> Aliases = [℄;list<Register> SubRegs = [℄;list<int> DwarfNumbers = [℄;}This base lass an be sublassed to de�ne omplex target registers with minimalrepetition as is done in the following example taken from the Spar bakend inLLVM:lass SparReg<string n> : Register<n> {field bits<5> Num;let Namespae = "SP";}lass Rd<bits<5> num, string n, list<Register> subregs> :SparReg<n> {let Num = num;let SubRegs = subregs;}The �rst de�nition introdues a new lass SparReg whih is derived from theRegister base lass. It adds a new 5-bit identi�er �eld to store the register identi�ernumber and assigns register instanes to the SP namespae. This lass is sublassedfurther with lass Rd to de�ne 64-bit slots in a �oating point register �le where eahslot an onsist of sub-registers. Finally, a 64-bit register D0 onsisting of twosubregisters F0 and F1 an be de�ned with the following simple de�nition, givingarguments to the Rd lass template:def D0 : Rd< 0, "F0", [F0, F1℄>, DwarfRegNum<[32℄>;The de�nition inludes the Dwarf number of the register, whih is used as anregister identi�er by debugging tools.

3. Compilers 25RegisterClass ontains registers, whih are grouped as members of the lass. Aregister lass reord de�nes the supported types of the member registers, whih mustbe the same for all registers of the lass. The supported types are de�ned as LLVMIR value types. Register lasses an be instantiated by de�ning a RegisterClassreord. For example, the Spar bakend de�nes the following register lass, whihontains 64-bit registers, suh as the D0 register de�ned in the previous example:def DFPRegs : RegisterClass<"SP", [f64℄, 64, [D0, D1, D2, D3,D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15℄>;The �rst argument of the RegisterClass template is the namespae of the de�ni-tion. The seond argument is a list of LLVM value types that an be stored in theregisters of this register lass. The third argument is the alignment in bits that isrequired when loading or storing register values to memory. The last argument is alist of registers belonging to the lass. The order of the list is used as the preferredregister alloation order by LLVM register alloators.Instrution is the target desriptor base lass for de�ning the instrution reords.The base lass ontains an extensive set of attributes to de�ne behaviour of instru-tions. Similarly to register reords, the Instrution lass an be sublassed to allowgroups of similar instrutions to be expressed in a ompat form. The following odeis part of the Instrution base lass de�nition. Most of the �ags and attributes thatde�ne detailed properties of the instrution are omitted:lass Instrution {string Namespae = "";dag OutOperandList;dag InOperandList;string AsmString = "";list<dag> Pattern;list<Register> Uses = [℄;list<Register> Defs = [℄;list<Prediate> Prediates = [℄;bit mayLoad = 0;bit mayStore = 0;// Rest of attributes omitted}The input and output operand lists are de�ned as strings that represent DAGsthat model the operands. The DAG representation allows omplex operand types,suh as operands of di�erent memory addressing modes to be expressed as in the

3. Compilers 26operand list. Eah operand is named so it an be referened by the instrutionpatterns and assembly string.The instrution patterns are also de�ned as DAGs. The patterns are used togenerate ode for the DAG to DAG instrution seletor. The patterns are de�nedusing prede�ned pattern fragments that orrespond to di�erent LLVM instrutionnodes in a seletionDAG. The DAG fragments an be nested to express omplexoperation patterns. The DAG operands refer to operand reords in a similar wayas the input and output operand lists. The operands are mapped to the input andoutput lists by the operand names. The following example is a typial sublassedinstrution reord, taken from the Spar bakend:def FDIVD : F3_3<2, 0b110100, 0b001001110,(outs DFPRegs:$dst), (ins DFPRegs:$sr1, DFPRegs:$sr2),"fdivd $sr1, $sr2, $dst",[(set DFPRegs:$dst, (fdiv DFPRegs:$sr1, DFPRegs:$sr2))℄>;This reord de�nes an instrution for double preision �oating point division.The F3_3 instrution format is sublass of the Instrution lass. The templatehas six arguments that instantiate an instrution reord. The �rst three argu-ments 2, 0b110100, 0b00100110 are values for Spar spei� instrution enoding�elds. The fourth and �fth arguments (outs DFPRegs:$dst), (ins DFPRegs:$sr1,DFPRegs:$sr2) are the output and input operand lists. The lists de�ne that the in-strution has one input and two output operands stored in DFPRegs lass registers.The lists also assign names $dst, $sr1and $sr3 for the operands.The sixth argument is an assembly string template used by the assembly printer.The template uses operand names de�ned in the input and output operand lists toreate slots for the operand assembly strings.The �nal argument is a pattern for the instrution, whih uses two prede�nedpattern fragments. The fdivd fragment mathes a seletionDAG node whih orre-sponds to the LLVM double preision �oating point division operation. The out-ermost set fragment makes the whole pattern math to a DAG where a result of adivision of two DFPRegs values is stored to a DFPRegs lass register.

3. Compilers 27Expliit seletion DAG patterns. Typially, most instrutions are seleted us-ing the instrution seletion patterns de�ned in instrution reords. However, insome ases, an expliit instrution seletion pattern is required. The expliit se-letion DAG patterns math an instrution pattern, and produe a DAG of targetmahine instrutions as a result. The patterns are de�ned using the following lasstemplate:lass Pattern<dag patternToMath, list<dag> resultInstrs> {dag PatternToMath = patternToMath;list<dag> ResultInstrs = resultInstrs;list<Prediate> Prediates = [℄;int AddedComplexity = 0;}In most ases, only a simple result with one DAG is required. A pattern withone result DAG an be de�ned using the following sublass:lass Pat<dag pattern, dag result> : Pattern<pattern, [result℄>;The �rst template parameter is the mathing pattern used in instrution seletion.The seond parameter is a DAG of target mahine instrutions whih is the resultof the instrution seletion for the pattern. The following is an example of expliitseletion DAG pattern, taken from the LLVM Mips bakend.def : Pat<(setge CPURegs:$lhs, CPURegs:$rhs),(XORi (SLT CPURegs:$lhs, CPURegs:$rhs), 1)>;This seletion DAG pattern mathes greater-or-equal instrutions, and seletsthem to a DAG whih performs the operation with a less-than SLT operation fol-lowed by negation of the result with an exlusive-or XOR operation.

28
4. IMPLEMENTATION
The TCE ompiler is based on the LLVM ompiler infrastruture. Due to speialrequirements of TCE, the ompiler is not implemented as an ordinary stati LLVMompiler bakend.The most important requirement for the TCE ompiler is retargetability. Thisposes a problem with LLVM ompiler infrastruture where properties of the targetmahine are hard-oded in the bakend. TCE requires a ompiler whih an adaptto templated arhitetures automatially without building a new ompiler for eahTTA.Due to limited projet resoures, another requirement for the ompiler imple-mentation was to reuse LLVM libraries as e�iently as possible. This requirementruled out a ompletely ustomized LLVM bakend with TCE-spei� dynamiallyretargetable instrution seletor and register alloator.LLVM bakends are normally implemented diretly into LLVM soure ode treeand built as a stati part of a ustomized LLVM build. In TCE, the automatidesign spae exploration tools have to invoke the ompiler within the program ode.It is also desired that the TCE bakend is kept as loosely tied to a spei� version ofLLVM as possible to ease portability to future versions of LLVM. For these reasonsthe TCE ompiler is not implemented diretly as a part of a LLVM build. Instead,the TCE ompiler is implemented as a library in the TCE soure tree whih utilizesunmodi�ed LLVM libraries and tools installed in the host system.4.1 TCE Data Strutures Used by the CompilerThis setion presents the data strutures and �le formats of TCE whih are used bythe ompiler.4.1.1 Proessor Arhiteture ModelThe proessor arhiteture template of TCE is modeled with the Mahine ObjetModel (MOM) data struture [21℄. A MOM instane de�nes the arhitetural lay-out of a TCE proessor and ontains all the information required to program theproessor. The proessor is modeled as arhitetural omponents suh as funtionunits, register �les, and transport buses.The instrution set of an arhiteture is visible through the funtion units in the

4. Implementation 29MOM. The operations in funtion units are referenes to Operation Set AbstrationLayer operation desriptions, desribed in Setion 4.1.2.The register �le omponents in the MOM de�ne the properties of all registers inthe arhiteture. The ompiler an use this information to build a list of availablegeneral purpose registers and their properties.Mahine objet models an be serialized to XML-based Arhiteture De�nitionFiles (ADF)s. ADF �les are used to pass arhiteture models of proessors betweendi�erent tools of the TCE toolset.4.1.2 Operation Set Abstration LayerOperation Set Abstration Layer (OSAL) is a library for de�ning properties andsemantis of operations in TCE mahines. The operation properties are stored inXML-format �les.Eah OSAL operation de�nes the name, the number of input operands, the num-ber of output operands, and the operand types of the operation. OSAL operationsalso have additional attributes whih de�ne properties suh as whih input operandsare ommutable, and �ags whih tell if the operation may read or write memory.An operation may also inlude one or more data �ow graphs de�ning the operationsemantis with other OSAL operations.TCE ontains a database of basi operations, whih are ommonly used in thedesigned proessors. New operations an be added by writing a desription of theoperation properties in a XML-�le. The following is an example of a user de�nedANDN operation:<operation><name>ANDN</name><inputs>2</inputs><outputs>1</outputs><in id="1" type="UIntWord"/><in id="2" type="UIntWord"/><out id="3" type="UIntWord"/><trigger-semantis>SimValue negResult;EXEC_OPERATION(not, IO(2), negResult);EXEC_OPERATION(and, IO(1), negResult, IO(3));</trigger-semantis></operation>This operation desription de�nes a ombined bitwise AND-NOT operation. Theoperation is de�ned to have two unsigned integer input operands and one unsignedinteger output operand.

4. Implementation 30The optional trigger-semantis setion desribes the operation semantis withexisting OSAL operations. The ompiler an use the semantis de�nition to au-tomatially exploit a user de�ned operation during ompilation. The semantis ofthe ANDN example de�ne that the operation is interhangeable with a sequene ofoperations, where the seond input operand bits are �rst negated with a not opera-tion, and the negation result is then passed to an and operation with the �rst inputoperand.4.1.3 Program ModelProgram Objet Model is an assembly-level intermediate representation of programsused by TCE tools [22℄. POMs an represent parallel programs instrution sheduledfor a target arhiteture, or sequential programs whih are instrution seleted andregister alloated for a target arhiteture, but not yet sheduled. A POM onsistsof an objet hierarhy representing the program ode and data de�nitions whihmodel the program and data memory ontents.The program ode hierarhy onsists of proedures, whih ontain basi bloks ofinstrutions. An instrution in a parallel POM onsists of moves whih de�ne thedata transports for eah transport bus of the target mahine on the instrution yle.A sequential POM instrution onsists of a single move, whih is not yet alloatedto a spei� transport bus or sheduled relative to other moves in the program.The data de�nitions onstitute the data memory ontents and the symbol tableof the data memory. Data de�nitions represent disrete objets in the memory, suhas individual global variables or more omplex data strutures. A data de�nitionmay ontain initialization data, whih is used as the initial ontents of the de�nedmemory area. POMs an be read and written to binary TTA Program ExhangeFormat (TPEF) �les to pass programs between di�erent tools of the TCE toolset.4.2 Minimum Target Mahine Con�gurationAn important aspet of the ompiler retargetability is the ability to ompile arbitraryC language soure ode for target mahine on�gurations with minimal resoures.The main onerns from the ode generation perspetive are the minimum register�le on�guration and the minimum operation set.The required number of registers is largely determined by the reserved registersneeded for the alling onvention and the registers required for exeution of oper-ations. The urrent implementation requires at least �ve 32-bit registers and twoboolean prediate registers.The minimal operation set onsists of operations required by the instrution se-letor to math any LLVM instrutions and the operations that an be inserted by

4. Implementation 31
LLVM-GCC
Frontend

LLVM
Linker

LLVM
Optimizer TCE Backend

Source Code Files Bytecode Libraries Target Machine ADF

Program TPEF

LLVM-TCEStandard LLVM Tools

.bc .bc.bc
.bc
...

Figure 4.1: TCE Compiler Toolhain.the ode generator after instrution seletion. Currently, the following operationsare required:
• Addition (ADD) and subtration (SUB) integer arithmeti operations.
• Greater than (GT), equal (EQ) and unsigned greater than (GTU) integeromparison operations.
• AND, inlusive-or (IOR) and exlusive-or (XOR) logial operations.
• Arithmeti bit shift operations to left and right.
• Logial bit shift to right operation.
• Load and store memory operations for word, half-word, and byte bit widths.
• CALL and JUMP ontrol �ow operations.4.3 Compiler ToolhainThe TCE ompiler toolhain onsists of a ompiler frontend, a set of target inde-pendent LLVM tools and a TCE ode generator. The TCE ode generator is imple-mented as a library whih is part of the TCE projet and separate from the LLVMtools. High level organization of the ompiler toolhain is illustrated in Figure 4.1.The �rst step in the toolhain is the LLVM-GCC frontend. LLVM-GCC is amodi�ed version of g distributed with LLVM, used as a frontend to produe theinitial byteode. The LLVM-GCC frontend has a disadvantage of not being om-pletely target independent. The frontend must be on�gured to output byteodethat is ompatible with the target ode generator. In pratie this means that soure

4. Implementation 32language data type sizes and endianess must be de�ned to be ompatible with thetarget mahine. The ompiler toolhain inludes a version of the LLVM-GCC fron-tend with target mahine on�guration for the TCE ode generator.The next steps of ompilation are linking and optimization. Both steps are donewith unmodi�ed LLVM tools. The ompiler expets these tools to be found in thehost system and they are not inluded in the TCE ompiler. All ompiled ode mustbe fully linked as one byteode module before ode generation beause TCE doesnot urrently support linking of binary mahine ode.The �nal step in the ompiler toolhain is the LLVM-TCE ode generator. LLVM-TCE is a TCE bakend implementation for LLVM. Unlike traditional LLVM bak-ends, LLVM-TCE is implemented as a stand-alone ode generator whih utilizesLLVM ode generation libraries instead of being implemented as a stati part ofthe LLVM ompiler. The ode generator has two input �les: a fully linked andoptimized byteode of the ompiled program and the arhiteture de�nition of thetarget mahine. The bakend is able to dynamially retarget itself to the targetmahine without the need of reompiling the whole ode generator.The whole toolhain an be invoked from ommand line using the te ompilerdriver sript. The sript aims to be ompatible with ommonly used g ompilerswithes to minimize work when porting build sripts to TCE.4.4 Calling ConventionTCE does not speify a alling onvention sheme that the ompiler has to follow.The ompiled programs are fully linked and there are no system alls or externallibraries. Therefore the ompiler an use any alling onvention, whih an behanged without any binary ompatibility issues.The urrent implementation uses a alling onvention whih is outlined in thefollowing rules.
• All parameters are stored in the stak by the aller. Parameters of type i1,i8 and i16 are always promoted to 32 bits to avoid problems with variadifuntion alls.
• All general purpose registers are aller-saved, i.e., the aller is responsible forsaving all registers it has live values into the stak before a all.
• The return address of a all is stored in the return address register by hardwarewhen a all instrution is invoked. The return address is saved to the beginningof the stak frame in funtion prologue.
• Funtion return value is stored in the return value register by the funtionepilogue. 64-bit return values are split into two 32-bit parts, one of whih

4. Implementation 33
Bytecode

Instruction
Selector

Register
Allocator

Prolog/Epilog
Inserter

LLVM/TCE
Conversion

TCE
Scheduler Program TPEF

TCELLVM Code Generator Framework

Figure 4.2: TCE Bakend.is returned in a seondary return value register. Returning of values that donot �t in the return value registers is handled by the LLVM ode generatorframework.
• Callee is responsible for restoring the stak pointer and return address registersto the state they had on funtion entry.4.5 TCE BakendOne of the main design goals of the TCE bakend is to reuse as muh ode from theLLVM ode generator framework as possible. However, modeling a ustomizablearhiteture template as a target mahine and the use of an external sheduler setlimitations requiring a design that di�ers from the standard LLVM ode generationorganization.TCE ode generation an be onsidered to onsist of two main phases. First, theLLVM ode generator framework is utilized to produe a sequential target mahineprogram. The sequential program is then sheduled to a parallel program usinga TCE instrution sheduler. The main ode generation passes are illustrated inFigure 4.2.The instrution seletor, register alloator and prologue/epilogue ode inserterpasses are based on the LLVM ode generator framework. These passes produe asequential program where all instrutions are seleted as target mahine instrutionsand all registers are alloated to physial registers.The sequential program is represented as an LLVM data struture, whih mustbe onverted to a TCE program objet model for the sheduler. The onversionis handled by LLVMPOMBuilder, whih is implemented as a separate LLVM odegenerator pass. The sequential POM an then be sheduled and a parallel TPEFwritten for simulation and binary program image generation. The TCE instrutionsheduler [23℄ is implemented as an independent library and not overed in thisthesis.The main design problem of the ode generator is the requirement for retargetabil-ity. The LLVM part of the ode generator only generates a sequential program whihsimpli�es the adaptation to the target mahine. The sheduler is responsible for al-loating most of the physial resoures while taking are of low level limitations

4. Implementation 34
TCETargetMachinePlugin

TargetFrameInfo

LLVMTargetMachine

TCETargetMachine

TargetDataFigure 4.3: TCE Target Mahine.of the arhiteture suh as operation latenies. This means that the LLVM partof the ode generator is only required to retarget itself at an abstrat level to theinstrution and register sets of the target mahine. The rest of the LLVM targetmahine properties, suh as type sizes and alling onventions are stati aross thearhiteture template.The dynami retargeting of the bakend is ahieved by implementing the TCEtarget mahine as a wrapper, whih loads the target instrution and register setmodels from a target mahine spei� plugin. The plugins are generated at ompileruntime from a mahine objet model of the target arhiteture.4.6 TCE Target MahineThe TCE bakend implements an LLVMTargetMahine that models the templatedTCE arhiteture. The target mahine implementation is divided to a stati partwhih models the hardoded properties of the arhiteture template, and a dynamipart whih models the ustomizable properties of onrete TCE mahines. Onlythe stati part of the target mahine is ompiled to the TCE bakend library. Themahine spei� dynami part is loaded from a plugin, whih an be ompiled inde-pendently for eah target mahine without reompiling the whole bakend library.High level design of the TCE target mahine is illustrated in Figure 4.3.TCETargetMahine implements the LLVMTargetMahine interfae whih is usedby the ode generator to aess the target arhiteture model and to reate aninstrution seletor pass. Only the data memory layout and frame information ofthe mahine model are implemented in the stati bakend and returned diretly.The ustomizable part of the arhiteture model is ontained in mahine spei�plugins whih implement the TCETargetMahinePlugin interfae. The instrutionseletor pass is generated from the instrution set desriptors of the target mahineand therefore it is also implemented in the target mahine plugin.

4. Implementation 35

TCERegisterInfo

TCEDAGToDAGIsel

TCETargetLowering

TCETargetMachinePlugin

TCEAsmPrinter

1

1

1

1

1

1

creates createsGeneratedTCEPlugin

TCEInstrInfo

Figure 4.4: Target Mahine Plugin.TargetData de�nes the data memory layout of the TCE arhiteture template.The layout is hardoded and does not hange between individual mahines. Thememory layout is de�ned to have the following properties:
• Pointer size is 32 bits,
• Data memory is big-endian,
• LLVM i1 and i8 types have 8 bit size and alignment in memory,
• LLVM i32 and f32 types have 32 bit size and alignment in memory, and
• LLVM i64 and f64 types have 64 bit size and 32 bit alignment in memory.TargetFrameInfo is also equal to all mahines. It de�nes that the stak growsdown, stak ontents are aligned to 32 bits on entry to funtions, and the o�set toloal area of a stak frame is -4 bytes.4.7 Target Mahine PluginWhen the TCE bakend library is instantiated, a mahine objet model of the targetmahine is passed to the bakend onstrutor. The bakend generates soure odefor a plugin ontaining the part of the target mahine model whih varies betweenindividual mahines. The plugin is then ompiled and loaded to omplete the targetmahine model. Figure 4.4 shows a lass diagram of the generated plugin.GeneratedTCEPlugin is the main lass of the plugin. It implements the TCE-TargetMahinePlugin interfae, whih is used by the TCETargetMahine lass toaess the plugin.

4. Implementation 36TCEInstrInfo derived from the LLVM TargetInstrInfo base lass models the tar-get mahine instrution set and implements various ode generation methods of theTargetInstrInfo interfae. The ode generation methods do not hange between tar-get mahines and are therefore stati soure ode for the plugin. The implementedvirtual ode generation methods of the base lass are:
• opyRegToReg: Generates ode for opying values between registers by insert-ing move instrutions,
• loadRegFromStakSlot: Inserts a load instrution for loading value in stak toa register,
• storeRegToStakSlot: Inserts a store instrution for storing value in a registerto stak, and
• InsertBranh: Inserts unonditional branh instrutions.The ode generated by these methods only use instrutions that are part of theminimal required opset. The same ode an therefore be generated for all targetmahines.The lass also has methods for querying properties of target instrutions, suhas if an instrution is a move between registers, or a load or store to stak. Thesemethods are related to ode that is generated by the stati ode generation methodsusing the minimal operation set, and do not require mahine spei� implementation.The instrution set model onsists of instrution desriptions and enumerationsgenerated from target desriptor �les of the target mahine by the TableGen odegenerator tool, desribed in Setion 3.6.TCERegisterInfo lass models the target mahine register set and ontains var-ious ode generation methods related to stak frame handling. The lass is derivedfrom the LLVM TargetRegisterInfo base lass. The following virtual ode generationmethods of the base lass are implemented.
• eliminateFrameIndex generates ode to replae abstrat frame index operandswith ode that alulates absolute addresses of items in stak from the stakpointer register and an o�set operand.
• eliminateCallFramePseudoInstr replaes pseudo instrutions adjusting stakframe size with ode that adjusts the stak pointer register value.
• emitPrologue is used by the prologue and epilogue ode insertion pass to gen-erate funtion prologue ode. The generated ode initializes funtion stakframes by saving return address register value to the stak and reserving spaefor loal variables.

4. Implementation 37
• emitEpilogue is used by the prologue and epilogue ode insertion pass to gen-erate funtion epilogue ode. The generated ode restores the saved returnaddress register value from stak, frees spae reserved by the stak frame andreturns from the funtion all.These funtions generate ode using only instrutions that are part of the minimalrequired opset. The generated ode is therefore same for all target mahines andthe funtions have an implementation whih is stati soure ode for the plugin.The register set model onsists of register info desriptions generated from targetdesriptor �les of the target mahine by the TableGen tool.TCEDAGToDAGISel implements an LLVM DAG to DAG instrution seletorfor the target mahine. The derived lass implements seletion methods whih on-vert SeletionDAG nodes to target instrution nodes. Most of the nodes an beseleted with instrution seletion methods whih are generated from the target de-sription �les of the target mahine. The methods are generated from the instrutionpatterns whih are part of the target instrution desriptors. The SeletionDAGnodes that are not seleted by the TCEDAGToDAGIsel methods are lowered totarget instrutions with TCETargetLowering phase. The following instrution andoperand nodes are seleted to temporary target nodes whih are lowered to targetinstrutions later.
• Conditional branh instrutions are seleted to pseudo instrutions, whih areonverted to guarded jumps in the LLVMPOMBuilder pass,
• Unonditional branh instrutions are seleted to pseudo instrutions, whihare onverted to jumps in the LLVMPOMBuilder pass,
• Frame index operands are seleted to target frame index operands, whih arelowered by the eliminateFrameIndex method of the TCERegisterInfo lass,and
• Memory address operands are seleted to target onstants and addressoperands whih are lowered in later phases of ode generation.TCETargetLowering is an implementation of LLVMTargetLowering base lass.Target lowering is the seond phase of instrution seletion, whih lowers Sele-tionDAG nodes that were not seleted by DAGToDAGISel phase. The lass on-strutor also initializes available register types and whih nodes are expanded andpromoted by the ode generator framework. The following lowerings are initializedin the onstrutor.

4. Implementation 38
• General purpose register lasses for i1, i32 and f32 types are de�ned, allowingLLVM to use operands of these types in the target ode. Operands of othertypes are lowered to instrutions using these types.
• Various instrutions are expanded and promoted to instrutions that are easierto lower.
• Integer division, modulo, rotate and multipliation instrutions are set to beexpanded to emulation funtion alls if the target mahine does not have theorresponding instrutions available.The lass implements the following funtions to lower instrutions that requireTCE spei� ustom lowering.
• LowerCallTo lowers funtion all instrutions. First, the stak spae requiredby the funtion all arguments is alulated. The alulated spae is set asargument size for a CALLSEQ_START pseudo instrution node whih isinserted to mark the start of a all sequene. Next, a sequene of stores areinserted to store the all arguments to stak. Arguments of types i1, i8 andi16 are extended to 32 bits. The atual target all instrution is inserted afterthe stores. The all instrution is followed by a move whih opies the returnvalue from the return value register. Finally, a CALLSEQ_END node withthe argument size operand is inserted to mark the end of the all sequene.
• LowerArguments lowers FORMAL_ARGUMENTS nodes whih have the in-oming arguments of funtions as operands. The node is lowered to a sequeneof loads whih loads the funtion arguments from the stak. Arguments of typei1, i8 and i16 are trunated to their original bit width from the extended 32-bitvalue passed in the stak.
• LowerRET lowers LLVM return instrutions in funtions having a returnvalue. The instrution is lowered to a move whih opies the return valueto the return value register followed by a target return instrution. Return in-strutions in funtions that do not have a return value are instrution seletedin the TCEDAGToDAGISel phase.
• LowerSelet lowers SELECT instrutions, whih selet result between true andfalse value operands based on a boolean ondition operand. The instrutionis lowered to a pseudo instrution node whih is onverted to guarded movesin the LLVMPOMBuilder pass.
• LowerOperation lowers global addresses and funtion onstant pool entries totarget nodes that are handled by the LLVMPOMBuilder pass.

4. Implementation 39

Figure 4.5: Target Mahine Plugin Generation.4.8 Plugin GenerationThe target mahine plugins are generated by the bakend when a new bakend isinstantiated. Soure ode for a target mahine plugin onsists of stati skeletons foreah LLVM target mahine lass. The skeletons ontain all ode generation methodsthat an have the same implementation for eah mahine. The rest of the methodsare generated by the TDGen ode generator whih generates target desriptor �les ofthe target mahine instrution and register sets. The desriptors �les are proessedwith the LLVM TableGen tool, whih generates implementations for various odegenerator allbak funtions and data strutures. The ode generated by TableGenis added to the skeletons as preproessor inludes. The plugin generation phasesand intermediate �les are illustrated in the Figure 4.5.TDGen generates two target desriptor �les: GenInstrInfo.td, whih ontainsthe instrution set desriptors and GenRegisterInfo.td whih ontains the registerdesriptors. The generated �les are proessed by TableGen along with three stati .td�les: TCEInstrFormats.td ontains the TCE instrution lass reords, TCEInstrInfoontains instrution reords required by all target mahines and a top level TCE.tdwhih inludes all desriptor �les and required LLVM header �les to one entity.In addition to the two .td �les, TDGen generates soure ode for various helpermethods in Bakend.in.The generated soure ode �les are inluded in the lass skeletons and ompiledwith a native ompiler to a plugin, whih an be loaded by the TCETargetMahine.

4. Implementation 404.8.1 Register Set DesriptorsThe whole register set desription onsists of one autogenerated GenRegisterInfo.td�le. Seven general purpose register lasses are always de�ned: Ri1, Ri8, Ri16, Ri32and Ri64 for integers, and Rf32 and Rf64 for �oating point values. The registerlasses are divided to integer and �oating point register types beause LLVM doesnot urrently support delaring one register lass for both integer and �oating pointvalues of equal width. Only the Ri1, Ri32 and Rf32 register lasses are added inTCETargetLowering as register lasses that are available for the ode generator, restof the lasses are urrently unused. All TCE register lasses are derived from theTCEReg base lass, whih de�nes lasses as a member of the TCE name spae, andallows passing a list of register aliases.The register set desription is generated by �rst analyzing the register set of thetarget mahine. TDGen iterates through all register �les and registers in the targetmahine arhiteture model. Registers are added to register lasses of orrespondingwidth with the following exeptions.
• If a register has a guard on a target mahine bus, it is added as a member ofthe Ri1 register lass so it an be used as a ondition for onditional moves.This is done even if the register �le is wider than one bit.
• If the mahine is not fully onneted, the last register of eah register �le isreserved for sheduler to route values between ports with missing onnetion.The generated register lasses have the following registers reserved for speial use:
• One 32-bit register is reserved to be the stak pointer register.
• One 32-bit register is reserved to be the return value register.
• One 32-bit register is reserved to be always available for the ode generator.It is used for alulating absolute address values from memory operands withbase address and an o�set operand. The register is also used when half of a64-bit return value has to be returned in an additional register with the returnvalue register.
• One 64-bit register is reserved for 64-bit return values if a 64-bit register �leexists.In addition to the general purpose register lasses, a speial register lass is de�nedontaining one register for the return address port of the target mahine ontrolunit. The register reords do not have any TCE spei� attributes. The reordsare enumerated, and an external helper funtion is generated in the Bakend.in

4. Implementation 41�le, whih maps the register enumerations to target mahine register �le names andregister indies.4.8.2 Instrution Set DesriptorsThe instrution set is de�ned in three target desriptor �les. TCEInstrFormats.tdand TCEInstrInfo.td ontain the stati desriptors, whih stay the same for eahtarget mahine. TCEInstrFormats.td ontains the instrution format lass tem-plate of TCE instrutions. TCEInstrInfo.td ontains desriptors for instrutionsand operand types that are always required by the ode generator. The two stati�les are installed as soure ode �les whih are used when a bakend plugin is om-piled. The third �le, GenInstrInfo.td whih ontains the target mahine spei�instrution desriptors is generated at ompiler runtime by the TDGen ode gener-ator of the TCE bakend library.Instrution format. Sine most of the instrution desriptors are automatiallygenerated, there is no need to utilize any omplex instrution format strutureswhih redue repetition of manually written patterns. A �at hierarhy of desrip-tors is easier to generate automatially. Only one simple instrution format lassInstTCE is de�ned and used by all instrutions. The lass is de�ned in the statiTCEInstrFormats.td �le to have the following struture:lass InstTCE<dag outOps, dag inOps, string asmstr,list<dag> pattern> : Instrution {let Namespae = "TCE";dag InOperandList = inOps;dag OutOperandList = outOps;let AsmString = asmstr;let Pattern = pattern;}The InstTCE instrution format has the usual input and output operand listsand an instrution seletion pattern. The assembly string is optional and onlyused for debugging purposes beause an assembler is not used. The instrutionformat does not ontain any TCE spei� attributes. The mapping of instrutionenumerations to the OSAL instrutions is handled by an external helper funtion,whih is generated in the TCEBakend.in �le.The operation pattern is also optional. It is required by the instrution seletorto be able to automatially exploit the instrution, but an be omitted if automatiinstrution seletion is not needed for the instrution. For example, an instrution

4. Implementation 42whih is only inserted by the ode generation methods of TCETargetLowering doesnot require a pattern.The Instrution base lass attributes of an instrution reord that are not in theinstrution lass template are de�ned by enlosing the instrution reord in a letblok. The following example sets a onditional branh instrution reord to havethe branh and terminator �ags set to true:let isTerminator = 1, isBranh = 1 in {def TCEBRCOND : InstTCE<(outs), (ins I1Regs:$gr, i32imm:$dst),"? $gr $dst -> jump.1;", [℄>;}Stati instrution desriptors. TCEInstrInfo.td ontains instrution reordswhih are always required for ode generation, but annot be easily generated au-tomatially. The instrution reords onsist mainly of pseudo instrutions that donot have orresponding instrutions in a target mahine funtion unit. The pseudoinstrutions are onverted to target mahine moves in the LLVMPOMBuilder pass.The pseudo instrutions inlude the following reords:
• Move instrution reords for all legal ombinations of soure and destinationoperand types,
• Various ontrol �ow instrutions of the target mahine ontrol unit,
• Pseudo instrutions whih adjust stak frame size, and
• SELECT pseudo instrutions whih selet one of two operands onditionally,based on a ondition operand.In addition to the pseudo instrution reords, the �le inludes patterns whihselet load and store instrutions for operands that require extension or type on-version. The stati desriptors also inlude patterns for memory address operands.The memory address operands are seleted to target mahine nodes, whih are on-verted to absolute addresses in the LLVMPOMBuilder pass after the program datamemory has been laid out.Generated instrution desriptors. GenInstrInfo.td ontains the targetmahine spei� instrution desriptors whih are generated by the TDGenmodule. The mahine spei� instrution reords onsist of reords for all targetmahine instrutions whih have known semantis. The �le also ontains emulationpatterns for instrutions that are required, but not supported by the target mahine.The instrution desriptor generation is done in the following main steps.

4. Implementation 431. The funtion units of the target mahine are examined to reate a list ofsupported abstration layer operations.2. A list of required operations is initialized with a hard-oded set of abstrationlayer operation names.3. Instrution reords with all ombinations of legal operand types are generatedfor eah target mahine operation having known semantis. The operation isremoved from the list of required operations initialized in the previous step ifit is on the list.4. The remaining operations in the required operation list are the missing oper-ations whih must be emulated. An emulation pattern is generated for eahmissing operation.5. A speial instrution reord is generated for the CALL instrution of the targetmahine ontrol unit.Instrution reords of the target mahine operations are generated from OSALoperation desriptions. The �rst step is to hek if the operation has known seman-tis. TDGen ontains a hard-oded list of primitive OSAL operations whih haveknown semantis mapped to LLVM instrution patterns. In order to generate aninstrution reord, the OSAL operation must be part of the hard-oded primitiveset, or the operation must have a data �ow graph onsisting of known primitiveoperations. Operations with unknown semantis are skipped and annot be usedautomatially by the ompiler. These ustom operations an only be used expliitlyin the ompiled program soure ode by invoking them with preproessor maros aswill be desribed in Setion 4.10.The seond step is to determine legal ombinations of operand types. OSAL doesnot de�ne bit-width for integer operands, so additional logi is required to determinethe ombinations of operand types that an be used in the instrution reords.Instrution patterns with an output operand in Ri32 register and input operandsin ombinations of Ri32 registers and 32-bit immediates are always generated foroperations with integer operands. Instrution reords with operands in Ri1 registersand as 1-bit immediate values are restrited to a hard-oded set of operations, whihare known to work with 1-bit input and output operands.The third and �nal step is to generate an instrution seletion pattern and writean instrution reord for all ombinations of legal operand types. The primitiveOSAL operations are mapped to orresponding LLVM instrution pattern tem-plates. The templates are hard-oded strings whih an be formatted by plaingoperand strings in the template. The template strings an also be nested to gener-ate instrution seletion patterns from OSAL operation semantis DFGs.

4. Implementation 44A simple example is the OSAL ADD operation, whih is one of the primitiveoperations with known semantis. The orresponding instrution pattern templateis "add %1%, %2%"where %1% and %2% mark the positions for the input operand strings. One ofthe legal operand ombinations for ADD has one input in Ri32 register and oneas a 32-bit immediate. The instrution pattern template is formatted with stringsorresponding to the operand types, resulting in the following pattern fragment:"add I32Regs:$op1, (i32 imm:$op2)"The result of the add operation is written in a Ri32 register, whih has to bede�ned in the instrution seletion pattern. This is ahieved by wrapping the gen-erated pattern fragment in a pattern whih sets the result in the orret type ofoperand. The omplete instrution seletion pattern for ADD with the hosen typesof operands is:"(set I32Regs:$op3, (add I32Regs:$op1, (i32 imm:$op2)))"The instrution reord input and output operand lists are generated aordingto the operand types. The assembly string is not required and it is urrently leftempty for all generated instrution reords. Now the whole instrution reord anbe written, taking the following form:def ADDri : InstTCE<(outs I32Regs:$op3), (ins I32Regs:$op1,i32imm:$op2), "",[(set I32Regs:$op3, (add I32Regs:$op1, (i32 imm:$op2)))℄>;The instrution reord name ADDri is generated by ombining the operationname with a letter for eah input operand type. The generated name is added toa helper funtion in Bakend.in �le, whih maps the instrution reords bak toOSAL operation names. The helper funtion is used by the LLVMPOMBuilder passto invoke orret OSAL operations when building a POM.The same proess is repeated for all operations with known semantis havingany ombination of legal operand types, aiming to generate as e�etive instrutionseletor from the instrution reords as possible.Emulation patterns. An instrution seletion pattern must be generated for allOSAL operations that are required, but not supported by the target mahine. Theemulation patterns are generated as seletion DAG patterns whih math the LLVM

4. Implementation 45

Figure 4.6: An emulation DFG for the GE operation.instrution orresponding to the missing operation to a ombination supported op-erations.The generation of an emulation pattern is based on the OSAL semantis DFGs ofthe missing operation. In order to write an emulation pattern, the missing operationmust have a DFG whih de�nes the semantis of the operation with operations thatare supported by the target mahine.An emulation pattern is generated by �rst requesting an emulation DFG fromthe OperationDAGSeletor module. A list of supported operations and the name ofthe missing operation are passed to the module. The module returns the semantisDFG with the least number of operations that are supported by the target mahine.As an example, let us assume that a target mahine is missing the requiredgreater-or-equal GE operation. A list of supported operations, inluding the sup-ported exlusive-or XOR and greater-than GT operations are passed to the Opera-tionDAGSeletor, whih returns a DFG illustrated in Figure 4.6 (note the reversedoperands for GT).Emulation patterns for all required operand type ombinations are generatedfrom this DFG. The patterns to math the missing operation are generated usingthe same method whih is used when generating instrution patterns of supportedoperations. The pattern of resulting instrutions is generated from the DFG in asimilar manner, with the exeption of using the generated names of the supportedoperations instead of LLVM instrution names.

4. Implementation 46One of the resulting emulation patterns, having both input operands in Ri32 lassregisters has the following �nal form:def : Pat<(setge I32Regs:$op1, I32Regs:$op2),(XORrr (GTrr I32Regs:$op2, I32Regs:$op1), 1)>;A similar seletion DAG pattern is generated for all required ombinations ofoperand types.CALL Instrution. The alling onvention desribed in Setion 4.4 states that allgeneral purpose registers are aller-saved. The Instrution base lass for instrutionreords has a Defs attribute, whih is a list of registers that the instrution maymodify. The register saving is ahieved by enlosing all CALL instrution reordsin a let blok, whih sets the Defs list to ontain all general purpose registers. Thisfores the ode generator to save any live values in GPRs before invoking a all, andto restore the values after the all. The register list is target mahine dependentand must be generated dynamially for eah target mahine.4.9 LLVMPOMBuilderLLVMPOMBuilder is a pass whih onverts LLVM target dependent representationof a program to a TCE Program Objet Model for sheduling. The pass is im-plemented as an LLVM MahineFuntionPass. LLVM MahineFuntionPasses areode generator passes that are exeuted on eah funtion of the target dependentrepresentation of the ompiled program. The passes are exeuted in three stages.First the pass is initialized with a doInitialization() method. Next, runOnMahine-Funtion() is alled for eah funtion of the program module. Finally, the passexeution is �nalized with the doFinalization() method.The onversion proess onsists of laying out the program global variables in thedata memory, and onverting the program instrutions to a POM funtion by fun-tion. The onverted representation is already using target mahine instrutions andregisters, so individual instrutions and operands an be onverted in a straight-forward manner. The only problem building the POM are the referenes betweenthe program data, funtions, basi bloks, instrutions and operands. For example,a global variable in the data memory might be initialized with a funtion pointer,or an instrution might have a basi blok label as an operand. For this reason,the program is built using plaeholders for the elements that an not be initializeduntil the whole program is built. The plaeholders are �xed to referene to orretentities when the onversion is being �nalized and all symbol loations are resolved.The onversion is done in the following order:

4. Implementation 471. Global initialized data is laid out to data memory. Absolute loation addressesare added to bookkeeping.2. Global uninitialized data is laid out to data memory and loations are addedto bookkeeping.3. The program instrutions are onverted funtion by funtion to POM repre-sentation. Instrution addresses of �rst instrutions in funtions and basibloks are added to bookkeeping.4. POM data de�nitions are built for initialized and uninitialized global data.5. An end symbol is generated at the end of the reserved data memory area.6. Referenes to the end symbol are �xed.7. Referenes to basi bloks are �xed aording to bookkeeping.8. Referenes to ode labels are �xed aording to bookkeeping.9. Stak pointer initialization ode is inserted to the beginning of the program.Phases 1 and 2 are done in the doInitialization() method. Phase 3 is done bythe runOnMahineFuntion() method. Phases 4-9 are done in the doFinalization()method.4.10 Operation MarosAn assembler is not part of the TCE ompiler toolhain, and therefore inline-assembly is not supported. However, low level programming is often required, es-peially when a programmer wants to use omplex ustom operations that annotbe exploited automatially by the instrution seletor. TCE irumvents the lak ofinline assembler by de�ning preproessor maros, whih allow hardware operationsto be invoked diretly in C soure ode.The operation maros an be used by inluding the teops.h header �le. Theheader is automatially generated during ompilation and ontains maros for alltarget mahine operations. The syntax to invoke an operation is_TCE_opname (input operand 1 , ..., output operand 1 , ...);For example, some TCE test suite target mahines ontain an address generatoroperation �AG� with four input operands i1, i2, i3, i4 and two output operands o1,o2. The operation an be invoked with the following syntax:_TCE_AG(i1, i2, i3, i4, o1, o2);

4. Implementation 48The operation maros are de�ned as dummy inline-assembly bloks, where theassembly string ontains only the operation name. The maro parameters are set asinput and output variables for the inline assembly blok aording to OSAL desrip-tion of the operation. The inline assembly is passed as an LLVM inline assemblyinstrution to the LLVMPOMBuilder pass where it is onverted to a sequene ofmoves invoking the operation orresponding to the name in the assembly string.

49
5. VERIFICATION AND BENCHMARKING
The ompiler was veri�ed and benhmarked using the Embedded MiroproessorBenhmark Consortium (EEMBC) Digital Entertainment Benhmark (DENBenh)software suite [24℄. The benhmark suite onsists mainly of video, audio, and imagedeoding and enoding benhmarks written in the C programming language.The benhmarks were run with several TTA mahines, starting with a near-minimal arhiteture on�guration. The arhiteture was then expanded by addingmore registers and operations inrementally, to verify orret ompilation and tobenhmark the ability of the ompiler to exploit additional registers and operations.5.1 Testing SetupThe testing was performed using a development version of the TCE toolhain witha llvm-g-4.2.1 -based ompiler frontend and a LLVM-2.5 -based ompiler bakend.The ompiled programs were simulated using the ompiled simulation engine of theTCE arhiteture simulator.The DENBenh test programs produe output that an be veri�ed for orretompilation with two types of veri�ation data. The programs that only use integerarithmeti produe an easily veri�able heksum, but the tests that use �oatingpoint arithmeti have results that depend on the �oating point presentation andpreision of the target mahine. The �oating point tests were therefore veri�ed byalulating the peak signal-to-noise ratio (PSNR) of the output data ompared tothe original data that was enoded and deoded. The results were ompared to theresults of a native GCC-ompilation.A subset of the DENBenh benhmark suite was hosen for benhmarking. Thewhole benhmark ontains multiple datasets for eah test program, but due to thelong simulation and sheduling times, only one dataset of eah test ase was hosenfor the �nal benhmarking.5.1.1 Test Mahine ArhiteturesThe �rst test mahine arhiteture 8reg.adf ontained the minimal operation setrequired by the ompiler to ompile arbitrary C-programs. The number of registerswas nearly minimum, divided to two register �les, one having eight 32-bit registersand the other two 1-bit registers having transport bus guards to support onditional

5. Veri�ation and Benhmarking 50exeution.The �rst test mahine is expanded to 16reg.adf, 24reg.adf and 32reg.adf by addingone additional register �le of eah type on eah inrement. Consequently, the lastregister set expansion test mahine has 32 32-bit registers divided to four register�les and eight 1-bit registers divided to four register �les.The 32reg.adf was then expanded by inrementally adding operations and fun-tion units to the previous test mahine on�guration. The �fth test mahine alu.adfadds integer operations, suh as half- and quarter-word sign-extension integer om-parison operations. The sixth test mahine mul.adf adds a funtion unit with MULinteger multipliation operation. The seventh test mahine div.adf adds a funtionunit with signed and unsigned integer division and modulo operations. The eightand �nal test mahine on�guration fpu.adf adds a single-preision �oating-pointfuntion unit for hardware �oating-point arithmeti support.The automati utilization of ustom operations was tested as a separate test asewith ama.adf arhiteture. The arhiteture was based on the div.adf arhiteture,with an addition of a MAC funtion unit. The funtion unit ontains a ustommultiply-aumulate (MAC) operation, whih omputes the produt of two integeroperands summed to a third integer operand.5.1.2 Test CasesThe veri�ed and benhmarked DENBenh test suite is divided to the following mini-suites:MPEG The MPEG algorithmmini-suite inludes a MP3 audio deoder, a MPEG-2 video enoder and deoder and a MPEG-4 video enoder and deoder. The enod-ing and deoding algorithms use �xed-point integer funtions, exept for a separateMPEG-2 video enoding algorithm, whih uses single-preision �oating-point enod-ing.Cryptography The ryptography mini-suite inludes the Advaned EnryptionStandard (AES) algorithm for publi-key ryptography, and a Hu�man data deom-pression test.Digital Image Proessing The digital image proessing mini suite inludes olorspae onversion tests and JPEG image ompress and deompress tests. The olorspae onversions tested are Red-Green-Blue to Cyan-Magenta-Yellow-Key (RGB-CMYK), Red-Green-Blue to luminane-hrominane (RGB-YIQ), and Red-Green-Blue high-pass grey-sale �lter (RGB-HPG).

5. Veri�ation and Benhmarking 51Test Case 8reg.adf 16reg.adf 24reg.adf 32reg.adfAES Enryption 6,264,499,994 4,466,047,052 4,486,888,618 4,281,280 926Hu�man deoder 17,171,346 13,237,365 12,074,356 11,999,862MP3 Deoder 80,917,223,868 52,849,307,890 53,404,066,109 52,226,334 542MPEG2 FixedPoint Deoder 9,546,900,307 6,918,972,000 6,324,530,344 6,303,739,676MPEG2 FixedPoint Enoder 31,721,047,907 14,995,595,434 12,837,263,273 12,420,274,298MPEG2 FloatingPoint Deoder 9,484,689,575 6,878,763,327 6,284,616,128 6,263,998,257MPEG2 FloatingPoint Enoder 92,748,324,214 59,332,178,569 56,909,735 974 56,126,620,307MPEG4 Deoder 7,899,586,664 5,840,422,082 5,259,561,810 5,260,183 293MPEG4 Enoder 9,671,106,214 5,096,814,413 4,479,466,232 4,384,969 549JPEG Deompress 70,237,028 47,393,649 46,715,535 46,430,077JPEG Compress 92,048,335 57,095,334 54,867,017 53,941,416RGB-CMYK Con-version 81,920,332 63,978,956 61,688,361 61,934,927RGB-HPG Conver-sion 42,399,960 28,952,858 28,723,261 28,729,041RGB-YIQ Conver-sion 144,035,421 102,770,795 101,462,594 101,080,386Table 5.1: Total yle ounts while extending the register set.5.2 ResultsThe total yle ount results of register set extension test mahines are shown inTable 5.1, and the total yle ount results of operation set extension test mahinesare shown in Table 5.2. All tests were run with full ompiler optimizations (-O3).The ombined benhmark results of the register and operation set extension arevisualized in Figure 5.1. The yle ounts of eah test are normalized to a perentageof the yle ount of the �rst 8reg.adf test mahine to give a omparative view ofthe e�ets of expanding the proessor arhiteture with di�erent test ases.The register set extension results of the 8reg.adf to 32reg.adf show that theompiler was apable of utilizing the additional registers. However, the registerswere added in large inrements and only the �rst step shows a major bene�t inthe yle ounts, and only some test ases had dereased yle ounts with highnumber of registers. This was an expeted result sine spilling of register valuesto the memory with the tested programs beomes negligible after the addition ofthe seond register �le of eah type. With additional register �les the ompilationbeomes onstrained by other fators limiting the program parallelization.Some tests had even a slightly inreased yle ount with additional registers.This is due to the sensitivity of the TCE sheduling algorithm to the input program.Even a minor modi�ation to the input program an a�et the shedule greatly,sometimes worsening the results slightly.

5. Veri�ation and Benhmarking 52Test Case alu.adf mul.adf div.adf fpu.adfAES Enryption 4,542,904,024 4,540,030,984 1,160,345,306 1,160,345 255Hu�man Deoder 11,642,552 8,825,467 9,052,383 8,985,644MP3 Deoder 48,520,367,083 9,059,358,249 1,479,281,602 1,467,197,925MPEG2 FixedPoint Deoder 6,137,917,674 5,084,777,212 5,085,924,323 5,066,232,403MPEG2 FixedPoint Enoder 11,911,073,035 5,836,516,113 5,054,462,375 4,938,783,751MPEG2 FloatingPoint Deoder 6,101,594,728 5,080,679,371 5,081,818,369 5,062,126,469MPEG2 FloatingPoint Enoder 52,457,356,242 24,456,512,313 23,701,893 525 5,245,135,767MPEG4 Deoder 5,111,721,660 4,766,445,482 4,762,085,052 4,752,243 766MPEG4 Enoder 4,183,065,148 1,446,986,368 1,439,220,215 1,439,114 164JPEG Compress 44,264,615 17,368,372 17,464,110 17,467,953JPEG Deompress 50,905,910 16,753,591 15,646,123 15,646,056RGB-CMYK Con-version 58,911,880 48,194,394 48,424,460 48,147,588RGB-HPG Conver-sion 26,920,175 9,715,088 9,637,959 9,637,905RGB-YIQ Conver-sion 94,255,793 24,339,522 24,339,195 24,108,743Table 5.2: Total yle ounts while extending the operation set.The �rst operation set extension step with the alu.adf test mahine added op-erations whih an be emulated with simple patterns of operations existing in theprevious test mahine. The ompiler was able to utilize the new operations, butmost test ases showed only small improvements in the yle ounts.The seond operation set extension test mahine added an integer multipliationoperation. The operation is used heavily by most of the test programs and theemulation of it is slow. As expeted, the e�et of the ompiler utilizing the operationan be learly seen from the diagram. For example, the MP3 test ase had a yleount dereasing more than 80% ompared to the previous test mahine.The div.adf added a divisor funtion unit to the mul.adf arhiteture. Thedivision operation is slow to emulate, but only the AES and MP3 test programsrely on it in their ore algorithm loops. However, the results show that the ompilerutilized the divisor funtion unit operations and the two test ases relying on theoperations had major dereases in the yle ounts.The �nal fpu.adf added �oating point operations. The MPEG-2 �oating pointenoder was the only test ase that utilizes �oating point values in the benhmarkedalgorithm and onsequently it was the only test ase whih had learly dereasedyle ount. However, the test ase proved that the ompiler is apable of utilizing�oating point operations.Utilization of the MAC operation in the ma.adf arhiteture was tested as a

5. Veri�ation and Benhmarking 53

Figure 5.1: Benhmark results normalized to the �rst test mahine.separate test ase with a di�erent version of the TCE toolhain. The results aretherefore only ompared with the div.adf results with the same toolhain version.The highest utilization of the operation was ahieved with the MP3 deoder benh-mark, where the instrution pattern mathed operations in the main deoding loop.Results for other test ases are omitted.To analyze the e�ets of the addition of the MAC operation, the number of exeu-tions of eah operation in the ma.adf was ompared with the orresponding resultswith the div.adf arhiteture. As expeted, only the MUL and ADD operations hadsigni�ant di�erenes in the exeution ounts. The number of these operations andthe total number of all exeuted operations are presented in the Table 5.3.The omparison of the results shows that approximately 192 million multiplyaumulations were performed using the MAC operation. However, the total numberof operations exeuted dereased by less than 140 million operations, beause partof the mathed multiply-aumulate patterns had an intermediate multipliationresult whih was used as an input operand for more than one ADD operation.The bene�t of having the MAC operation was further diminished by the lesserdegree of parallelization ahieved by the instrution sheduler. The program exe-ution time dereased by approximately 2.1 %, from 1,576,173,008 to 1,543,460,040lok yles.The purpose of this test was to demonstrate the ability of the ompiler to auto-

5. Veri�ation and Benhmarking 54div.adf ma.adf di�ereneMUL 268,469,874 133,805,319 -134,664,555ADD 841,446,719 646,930,374 -194,516,345MAC - 191,858,218 +191,858,218Other operations 1,297,327,995 1,294,872,357 -2,455,638Total 2,407,244,588 2,267,466,268 -139,778,320Table 5.3: Operation exeution ounts for the MP3 deoder test ase with andwithout the MAC operation.matially utilize operations de�ned with ustom operation patterns. The results ofthe MP3 deoder test ase show that the ompiler bakend an ahieve relativelyhigh utilization of a simple operation pattern in realisti programs. In general, thebenhmark results show that the ompiler is apable of adapting itself to arhite-tures with varying operation and register sets, and it an exploit additional resouresof the target mahines.

55
6. CONCLUSIONS
This thesis introdued a new ompiler for the TCE toolhain, exluding the in-strution sheduler whih is designed and doumented separately. The ompiler wasimplemented as a bakend for the LLVM ompiler infrastruture.The thesis gave a brief introdution to the TTA onept and desribed the TCEodesign toolhain for designing and programming TTA proessors. The desriptionof the role of the ompiler in the toolset was followed by a desription of the relevantompiler onepts and the introdution of the LLVM ompiler infrastruture.The main part of this thesis is the doumentation of the implementation detailsof the TCE-LLVM ompiler bakend. The bakend di�ers from most ompiler bak-ends by the ompilation target mahine, whih is a proessor arhiteture templateinstead of a stati proessor design. The bakend was required to adapt to di�erentTTA arhitetures derived from the TCE arhiteture template, whih introduedomplex design problems having to be solved.In addition to the retargetability, the requirements for the ompiler were orret-ness of ompiled programs and the requirement of providing a reliable and extensiblebase for further ompiler development. The ompiler design also aimed to providepowerful modern ompiler optimizations, whih was ahieved by hoosing the LLVMas the basis for the ompiler.The ompiler was veri�ed with various test ases and benhmarks. The resultsfor the most important benhmark, the EEMBC DENBenh Digital EntertainmentBenhmark Suite are presented in this thesis. All test results were suessfullyveri�ed and produed either the orret heksum, or PSNR result similar to thenative benhmark results. The results also on�rmed that the ompiler was able toadapt to di�erent templated arhitetures and was able to utilize additional resouresin the proessor arhitetures.The suessful benhmarks and orret results show that the ompiler ful�llsthe original requirements. However, the ompiler leaves muh room for furtherimprovements and optimizations.

56BIBLIOGRAPHY[1℄ J. A. Fisher, P. Faraboshi, and C. Young, Embedded Computing: A VLIWApproah to Arhiteture, Compilers and Tools. Morgan Kaufmann, 2005.[2℄ H. Corporaal, Miroproessor Arhitetures: from VLIW to TTA. John Wiley& Sons, 1997.[3℄ J. Hoogerbrugge, �Code generation for transport triggered arhitetures,� Ph.D.dissertation, Delft University of Tehnology, The Netherlands, 1996.[4℄ Department of Computer Systems, Tampere Univ. Teh., �TCE projet atTUT,� http://te.s.tut.�. [Online℄. Available: http://te.s.tut.�[5℄ T. U. T. Department of Computer Systems, �TTA odesign environment v1.0user manual,� Projet Doument, Tampere University of Tehnology, Finland,2008.[6℄ P. Jääskeläinen, �Instrution Set Simulator for Transport Triggered Arhite-tures,� Master's thesis, Department of Information Tehnology, Tampere Uni-versity of Tehnology, Finland, Sep 2005, http://te.s.tut.�/.[7℄ V. Korhonen, �Tools for Fast Design of Appliation-spei� Proessors,� Mas-ter's thesis, Department of Information Tehnology, Tampere University ofTehnology, Finland, Jan 2009, See http://te.s.tut.fi/.[8℄ L. Laasonen, �Program Image and Proessor Generator for Transport Trig-gered Arhitetures,� Master's thesis, Department of Information Teh-nology, Tampere University of Tehnology, Finland, Apr 2007, Seehttp://te.s.tut.fi/.[9℄ R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadek, �Ef-�iently omputing stati single assignment form and the ontrol dependenegraph,� ACM Trans. Program. Lang. Syst., vol. 13, no. 4, pp. 451�490, 1991.[10℄ S. S. Muhnik, Advaned Compiler Design and Implementation. MorganKaufmann, August 1997.[11℄ A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Priniples, Tehniques, andTools. Addison-Wesley Longman Publishing Co., In., 1986.[12℄ J. Janssen, �Compiler strategies for transport triggered arhitetures,� Ph.D.dissertation, Delft University of Tehnology, The Netherlands, 2001.

BIBLIOGRAPHY 57[13℄ P. Ienne and R. Leupers, Customizable Embedded Proessors�Design Tehnolo-gies and Appliations, ser. Systems on Silion Series. San Mateo, CA: MorganKaufmann, 2006.[14℄ The LLVM Team, �The LLVM Compiler Infrastruture Projet,�http://llvm.org. [Online℄. Available: http://llvm.org[15℄ C. Lattner and V. Adve, �LLVM: A ompilation framework for lifelong pro-gram analysis & transformation,� in Pro. Int. Symp. Code Generation andOptimization, Palo Alto, CA, Marh 20�24 2004, p. 75.[16℄ Free Software Foundation, �GCC, The GNU Compiler Colletion,�http://g.gnu.org. [Online℄. Available: http://g.gnu.org[17℄ Chris Lattner and Vikram Adve, �LLVM Language Refer-ene Manual,� http://llvm.org/dos/LangRef.html. [Online℄. Available:http://llvm.org/dos/LangRef.html[18℄ C. Lattner and V. Adve, �The LLVM Compiler Framework and InfrastrutureTutorial,� in LCPC'04 Mini Workshop on Compiler Researh Infrastrutures,West Lafayette, Indiana, Sep 2004.[19℄ Chris Lattner, �TableGen Fundamentals,�http://www.llvm.org/dos/TableGenFundamentals.html. [Online℄. Avail-able: http://www.llvm.org/dos/TableGenFundamentals.html[20℄ Mason Woo and Misha Brukman, �Writing an LLVM Compiler Bakend,�http://www.llvm.org/dos/WritingAnLLVMBakend.html. [Online℄. Available:http://www.llvm.org/dos/WritingAnLLVMBakend.html[21℄ A. Oksman, �Mahine Objet Model,� Internal Projet Doument, TampereUniv. Teh., Finland, 2004-2005.[22℄ A. Cilio and A. Metsähalme, �Program Objet Model,� Internal Projet Dou-ment, Tampere Univ. of Teh., Tampere, Finland, 2004-2006.[23℄ A. Metsähalme, �Instrution Sheduler Framework for Transport Trig-gered Arhitetures,� Master's thesis, Department of Information Tehnol-ogy, Tampere University of Tehnology, Tampere, Finland, Apr 2008, Seehttp://te.s.tut.fi/.[24℄ EEMBC, �Denbenh 1.0 software benhmark databook,� PDF,http://www.eemb.org/TehLit/Datasheets/denbenh_db.pdf.

