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Application specific processors offer a great trade-off between cost and performance.

They are far more energy inexpensive compared to fixed processor designs. How-

ever, the design of these processors is still a challenging and time consuming task.

Selecting suitable configurations from a vast design space needs time, accuracy and

good practices. Thereby automated design space exploration tool has great inter-

est in designing application specific processors. It assists the designer to select the

most suitable resources for a given applications. Automated exploration tool must

give reliable results, so one corner stone of the design space exploration is fast but

accurate cost estimation of processor architectures.

TTA-Based Codesing Environment (TCE) framework is a set of non-commercial

software tools for designing application specific processors. Its purpose is to help

designers to find the most optimal processor architecture for the application at hand.

It uses transport triggered architectures (TTA) as a template. TTA is a modular

and flexible architecture and thereby suitable for customization.

In this thesis, an automated design space explorer tool of Transport Triggered Archi-

tectures was developed for TCE framework. The purpose of the automated design

space explorer is to find out the best architecture configuration for a given appli-

cation set. The automated design space explorer uses the toolset offered by the

framework to explore the design space and verify the functionality of the gener-

ated architectures. Results and cost statistics of the configurations are stored into

a database for further examination. In addition of the example algorithm that was

designed and implemented during this thesis new exploration algorithms can be de-

signed and implemented as plugins for the core application. This makes the further

implementation and adoption of new algorithms easy.
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Sovelluskohtaisesti räätälöidyt suorittimet tarjoavat hyvän kompromissin hinnan ja

tehokkuuden väliltä. Ne ovat huomattavasti energiatehokkaampia verrattuna räätä-

löimättömiin yleiskäyttöisiin suorittimiin. Sovelluskohtaisten suorittimien suunnit-

telu on kuitenkin haastavaa ja aikaavievää. Sopivien konfiguraatioiden valitseminen

laajasta suunnitteluavaruudesta vaatii aikaa, tarkkuutta ja hyviä käytäntöjä. Sik-

si automaattinen sunnitteluavaruutta läpikäyvällä työkalulla on suurta kiinnostusta

sovelluskohtaisesti räätälöitävien suorittimien suunnittelussa. Se helpottaa suunnit-

telijaa valitsemaan sopivimmat resurssit tiettyä sovellusta varten. Automaattisen

työkalun täytyy antaa luotettavia tuloksia, joten yksi suunnitteluavaruuden läpi-

käynnin peruskivistä onkin nopea mutta tarkka suoritinarkkitehtuurin kustannus-

ten arviointi.

TTA-Based Codesing Environment (TCE) on kokoelma ei-kaupallisia ohjelmistotyö-

kaluja sovelluskohtaisten suorittimien suunnitteluun. Sen tarkoitus on auttaa suun-

nittelijoita löytämään juuri tietylle sovellukselle sopivin suoritinarkkitehtuuri. TCE

perustuu suoritinarkkitehtuuriin nimeltä "transport triggered architecture"(TTA).

TTA on modulaarinen ja joustava arkkitehtuurimalli, joka ominaisuuksien puolesta

soveltuu hyvin räätälöintiin.

Tässä diplomityössä on kehitetty automaattista TTA-suunnitteluavaruuden läpi-

käyntityökalua TCE-sovelluskehykseen. Automaattisen työkalun tarkoituksena on

löytää sopivin arkkitehtuurikonfiguraatio halutuille sovelluksille. Automaattinen

suunnitteluavaruuden läpikäyntitylkalu hyödyntää muita sovelluskehyksen työkalu-

ja tutkimaan suunnitteluavaruutta ja todentamaan luotujen arkkitehtuurien toimin-

nallisuuden. Tulokset ja kustannustiedot konfiguraatioista tallennetaan tietokantaan

myöhempää tutkiskelua varten. Esimerkkialgoritmin lisäksi, joka suunniteltiin ja to-

teutettiin osana tätä diplomityötä, uusia tutkimusalgoritmeja voidaan suunnitella ja

toteuttaa pääsovelluksen lisäosiksi. Tämä tekee tulevien toteutusten ja algoritmien

käyttöönoton helpoksi.
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1. INTRODUCTION

High performance and energy efficiency play the main roles in the current embed-

ded systems. Customizable processor architectures have taken an important role in

embedded system designs where increasing time-to-market requirements and more

demanding speed and other requirements are pushing designers to create more ad-

vanced designs in less time.

In a traditional off-the-shelf processor, resources are fixed. The processors are

designed to execute most applications efficiently and therefore are good for multi-

purpose uses. They are cheap and easy to get. But they also have their disadvan-

tages, i.e., they are not the most energy efficient solutions and therefore not the best

options for mobile devices or other devices that should run with small energy. These

general purpose processors (GPP) are not either the best choice to run specialized

tasks.

In embedded systems, microprocessors have often specific needs like low cost,

high performance or low power consumption. All of these requirements can not be

achieved with traditional multipurpose microprocessor architectures. A processor

architecture template, which can be tailored for certain application set, offers one

solution. Transport Triggered Architectures (TTA) represent a customizable proces-

sor architecture template. It is an efficient platform for a specific set of applications

at hand. TTA is a modular processor architecture which can be easily customized

and is, therefore, great in designing application specific processors. TTA processors

can be highly optimized to contain only needed resources that can efficiently execute

the specified applications. When designing a processor for a given set of applica-

tions it is possible to optimize the efficiency of TTA processor beyond the general

purpose processors. TTA combines flexibility, modularity and scalability and can

be tailored in use of wide variety of applications for mobile devices and other con-

sumer electronic applications to the needs of embedded systems designs i.e. image

processing.

When dealing with highly customizable processor architectures the design plays

an important role. Selecting resources for a processor is not a simple task. Each

component consume power so no extra components are preferred and some com-

ponents might be simply too expensive to use. Area-wise architecture design must

often have minimal area and energy consumption but still have high performance
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to execute the applications. When creating the optimal processor there are many

resource variations to be tested if one is better than the other. The functionality

of each variation must be tested and evaluated with an enough accurate estimate

of the energy consumption and speed. This design space exploration is very time

consuming and needs constant awareness from the designer. Automating this task

makes the whole design process faster.

In this thesis, a tool for the automated design space exploration of TTA the

Explorer was implemented as a part of TTA-based Codesign Environment (TCE)

toolset. The Explorer tries to create the optimal processor configuration which com-

bines the processor’s architectural components and implementations of each compo-

nent by testing a great number of component variations of TTA. Each variation is

simulated and cost estimated to ensure the functionality and comparability of the

configurations.

This thesis contains six chapters. Chapter 2 introduces the term design space

exploration of application specific processors. It covers how the task is carried

out for TTA in TCE. Chapter 3 tells more about the framework in TCE for TTA

exploration. In Chapter 4 an example exploration algorithm that was developed in

this thesis is introduced and in Chapter 5 there is a collection of results made with

this example algorithm. Finally Chapter 6 summarizes the thesis.
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2. DESIGN SPACE EXPLORATION OF

APPLICATION SPECIFIC PROCESSORS

This chapter provides an introduction to application specific processors and what is

meant with their design space exploration. The latter part concentrates in introduc-

ing Transport Triggered Architectures (TTA) and how the design space exploration

is expected to work there.

2.1 Application Specific Processors

Application specific instruction set processors (ASIP) are processor designs which are

tailored for particular use. They are co-designed with the software that they should

run. This way the processor’s design can be most easily and efficiently tailored

for the specified software. The instruction set which tells all the different native

operations that the processor can operate can be optimized for the application set

at hand. With optimization the energy consumption and the silicon area costs of

the processor can be minimized and the processor can be used in such devices where

size or energy consumption would restrict the use of GPP. Instruction set tailoring

for specific application or a small set of applications sets the ASIP in between the

flexibility of GPP and an application specific integrated circuit (ASIC) which is

only capable of running the one program it is designed for. As an advantage against

the ASIC the software code of ASIP can be changed a little where ASIC needs a

whole new chip. This is handy when small fixes to the software or new features are

added after the device is already been produced. Also in this way the ASIP design

lies in between of the GPP and the ASIC designs. Every unnecessary instruction

wastes time and, more importantly, power. Also unnecessary bit transfers consume

energy. E.g. every 32x32-bit multiplication of quantities that would only require 20

bits of precision wastes time and more than 50% of the energy consumed in that

computation compared to computation made with adequate amount of bits [1]. This

gives the motivation to use ASIPs over the GPP, not spending resources.

Very long instruction word (VLIW) [2] processor architecture has been an attrac-

tive alternative, e.g., in the digital signal processor (DSP) applications. They are

scalable, so more logical units can be added to give performance, and flexible, i.e.,

operations can be almost anything [3]. The general organization of VLIW architec-

ture can be seen in Figure 2.1. The VLIW consists of instruction fetch, instruction
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Figure 2.1: VLIW processor high-level organization.

decode units, parallel function units (FU) and a multi-ported register file (RF) which

is shared by the FUs. The RF consist of many registers and the number of ports

makes it complex and one of the bottlenecks of the design.

Instruction set parallelism (ILP), which is a measure of how many of the opera-

tions in a program code can be performed simultaneously, can be efficiently exploited

in these kinds of processors like VLIW. In Figure 2.2 there is a simple example how

ILP is generated. In the figure the operation on line 3 depends on the result of

operations in lines 1 and 2, so it cannot be calculated until the both of them are

completed. However, operations on lines 1 and 2 are not dependent of other oper-

ations, so they can be calculated simultaneously. If each of the operations can be

completed in one unit of time then these three instructions can be completed in total

of two time units. This gives an ILP of 3/2. A processor that executes all of the

instructions one after another might be very inefficient whereas the exploit of ILP

can give a huge burst in efficiency. The goal of compiler and processor designers is to

find this kind of structures and take advantage of ILP as much as possible. The per-

formance can be improved by executing different sub-steps of sequential instructions

simultaneously or by executing multiple instructions completely simultaneously. In

1: e := a + b
2: f := c - d
3: g := e * f

Figure 2.2: ILP example
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Figure 2.3: Pipelining.

Figure 2.3 is a simple example of a unit that implements a three-stage pipelining.

In this kind of pipelining the execution of instruction is divided in three stages:

• Instruction fetch (A)

• Instruction decode and register fetch (B)

• Execute (C)

The idea of pipelining is to split the processing of an instruction into a series of

independent steps. This increases the number of instructions that can be executed

in a unit of time without the need of adding more processing units. One processing

unit can prepare the executing of following instructions in advance at the same time

it is processing the current instruction. A non-pipeline architecture is inefficient

since more processor components are idle when another component is active during

the instruction cycle. Pipelining decreases this idle time of components but does

not remove it completely.

In Figure 2.3 number of instructions i grows downwards and time t grows to

right. The different sub steps of operation execution can be utilized by using the

three-stage pipelining which consists of three stages. These stages could include:

instruction fetch, decode and execution. In instruction fetch phase, the instruction

fetch unit fetches the next instruction from the memory. In the decode stage the

instruction is decoded and data path is prepared for data transports and in the

execute stage the instruction is executed. This is just an example and these steps

may vary and there can also be more of these steps to give even more efficiency

depending on the used architecture.

In graphics and scientific computing applications there can be much of ILP. Also

applications from the field of digital communications and multimedia consumer elec-

tronics often spend most of their cycles executing a few time-critical code segments

with well-defined characteristics, making them amenable to processor specialization.
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Figure 2.4: TTA processor high-level organization.

These computation-intensive components often exhibit a high degree of inherent par-

allelism, i.e., computations that can be executed concurrently. VLIW and similar

ASIPs are particularly effective in exploiting such fine-grained ILP. [4]

The basic idea of VLIW is to determine the schedule of the program execution at

the time of static scheduling. The scheduler needs to find out the interdependencies

of the instructions and determine which operations can be executed simultaneously

and by which part of the processor. In traditional processor architectures like CISC

(Complex Instruction Set Computer) or RISC (Reduced Instruction Set Computer)

the processed code is completely sequential and the processors themselves check

which instructions can be executed simultaneously without changing the result. This

needs logic and wastes power in these kind of processor architectures. Since in

VLIW the execution order of the operations is determined already by the compiler,

the processor itself does not need to contain the complex hardware to perform the

runtime scheduling. As a result, VLIWs potentially offer significant computational

power with less hardware complexity.

However, there are also drawbacks in the VLIW architecture. The length of

one instruction is longer than in traditional processor architectures so the compiled

code weights usually more. Longer instruction words lead to methods of instruction

packing which correspondingly adds the complexity of the instruction decoder.

Transport Triggered Architectures (TTA) reminds VLIW. Figure 2.4 illustrates

a high-level TTA architecture. In VLIW the FUs are always connected to a multi-
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ported register file (RF), but in TTA there are multiple register files and they are

connected to the interconnection network, not directly to the FUs. In TTA this gives

a possibility of software bypassing where results of FUs are transported directly to

another FU. This approach reduces especially the RF port bottleneck which creates

data path complexity in VLIW when more FUs are added.

From the software aspect, the TTA approach is quite similar to VLIW but it gives

even more responsibility for the compiler. Where program code for VLIW only de-

scribes which instructions can be executed simultaneously the TTA code tells also

how the instructions are transferred internally between the registers and computa-

tional units. TTA reveals the internal buses and ports in the instruction set and

these can be exploited by the compiler. This gives more power for controlling the

internal connection needs and the number of connections between computational

units can be reduced greatly. This makes possible for TTA processor to be smaller,

faster and less energy consuming than similar purpose VLIW designed processor.

Drawbacks of TTA are even longer instruction words than in VLIW. The drawbacks

of longer instruction words can be decreased by different program compression tech-

niques. In case of TTA the program is compressed during the compilation when the

speed of compression is of little importance. However, the decompression must be

performed during run-time, so it adds an overhead to the execution time. It has

been shown that dictionary-based program compression is the most suitable com-

pression method for TTA [5]. For more discussion of hardware and software aspects

of the TTA see [6], [7] and [3].

2.2 TTA-Based Codesign Environment

MOVE framework was the first toolset for co-design TTA systems [8]. The frame-

work development was started in Delft University in Netherlands and developed

further with Tampere University of Technology. Further information of the project

can be found in [9].

In 2002 at Department of Computer Systems of Tampere University of Technology

was started a project aiming to build a new toolset with a controlled manner and

expandability in mind. The project is called TTA-Based Codesign Environment

(TCE). [10]

2.2.1 Inputs for TCE

The initial inputs for the TCE design flow are the C coded programs. The processor

is designed for these input programs. Current front-end compiler of the TCE, tcecc,

is LLVM (Low Level Virtual Machine) based front-end compiler which generates

LLVM byte code from the C code. This byte code is the input of the TCE design
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Figure 2.5: Simple TTA structure.

flow. For more information of the LLVM framework refer to [11].

2.2.2 Processor Architecture Template of TCE

The TTA processor architecture template consists of few base components. The

TTA can be considered as a set of FUs, RFs, move buses and sockets. Buses and

sockets form an interconnection network for the TTA that connects the FUs and

RFs.

In TCE the architecture definitions are stored in a file called Architecture Defi-

nition File (ADF) [12]. ADF is a text file in EXtensive Markup Language (XML)

format that contains description of the processor architecture. ADF contains identi-

fied components and parameters for the processor but it does not specify the internal

implementations of the components.

Figure 2.5 is an example of a simple TTA processor supported by the TCE. The

figure is an ADF file presented with ProDe tool of TCE. The different component

types are described in the following.

Function Unit Function units contain the operations that the TTA processor can

execute. One FU may contain any number of operations which creates the

real functionality of the processor. These FU operations can be decided freely

by the designer. TCE comes with a set of basic operations like addition and

shifting that can be directly mapped to LLVM operations and used by the

compiler. New operations can be created and added to custom operation sets

by the designer. These custom operations may have potential use in cases

when some specific operations are repeatedly used in same order. Then an

customized operation containing functionality of these sequential operations

can be created to reduce the data moves and execution time. Function unit
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operations can also be pipelined to increase the potential clock frequency.

Data to and from a FU is transferred through ports. One of the FU ports is

used to select which operation of the FU is used. A triggering port is one of

the FU ports and it is used to start the executing of the selected operation.

Values are stored in internal registers of the FU where they are read in time

of execution and written as a result.

Some FUs in TTA processor have operations that can access memory, such as

loading and storing values into the data memory. These FUs must specify the

address space that is accessed by the FU. The address space defines a range

of memory addresses that the FU can access. [12]

Register File Registers are used to store temporal data during the program exe-

cution. A register file can contain any number of registers. All the registers

in a single RF have the same bit width which is not limited. Register files can

have any number of input and output ports to write and read the data of the

registers. RF having multiple input or output ports can be accessed multiple

times within one clock cycle. [12]

Immediate Unit Immediate units (IU) are optional components that are used to

transfer long immediates to the processor core. An IU is a special register file

where registers contain long immediate values that are written by the control

unit during instruction decoding. IU can contain only read ports since the

registers are written by the control unit directly. [12]

Control Unit Control unit (CU) is a specialized FU that creates control signals

for the interconnection network. It has functionality to fetch instructions from

the instruction memory and decode them to produce the control signals. The

CU usually have at least the operations call and jump which perform function

calls and jumps in the program code being executed. [12]

2.2.3 Design Flow

Designing a processor for TCE follows a particular design flow which includes fol-

lowing phases: sequential LLVM byte code generation, design space exploration

including configuration selection, parallel code generation and analysis and as a

final phase program image and processor generation. In this thesis the term con-

figuration holds two elements: architecture and implementation. The architecture

consist of components that tell how the processor is built and what kinds of resources

it holds. The implementation part combines the architectural components to the

hardware descriptions how the different components are implemented. There can



2. Design Space Exploration of Application Specific Processors 10

Sequential LLVM 
Byte Code Generation

Application (ANSI C)

Architecture Generation

Implementation Selection

Parallel Code Generation 
and Verification

Program Image and
 Processor Generation

- Processor described in HDL
- Program images ready to be uploaded
 in the processor memory

Better configuration
needed.

Architecture meets 
the requirements.

Estimation and Analysis

Figure 2.6: Design Flow in TCE.

be many variations of the implementations for each architecture component so the

implementations must also be selected for each component. Figure 2.6 illustrates

the design flow in the TCE.

Sequential Code Generation In order to start the design space exploration it

is essential to have the target applications available. The processor is designed from

the basis of the resource utilization of the programs. The application code can be

written in high-level programming language such as C and it can be compiled as

LLVM byte code with the TCE front-end compiler.

Design Space Exploration and Implementation Selection After the initial

input code is generated, the target architecture is designed. This is done by exploring

the design space by adding and removing components of the target architecture.

Every component affects to costs of the processor so this phase is optimizing the

architecture until the design meets the set requirements. Implementations for the

architecture components are then selected from pre-created libraries. Complete
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configurations are compiled and simulated for evaluating the configuration costs

such as speed, silicon area and energy consumption. This phase is repeated until no

better configuration is found. The simulator application of TCE toolset is described

in [7] and developed further as a compiling simulator in [13].

Parallel Code Generation and Analysis The initial sequential LLVM byte

code is scheduled and compiled as parallel code against the target processor config-

uration that is generated in the exploration process with tcecc compiler. The result

parallel TTA-program is then simulated with the processor configuration. With the

results of simulation the program and the processor configuration are analyzed and

evaluated for terms such as speed, silicon area and energy consumption. If the par-

allel code is not fast enough or the other processor requirements are not met, the

previous phase is repeated to fix the configuration. This can be done multiple times

when finding out the most affordable configuration before entering the final phase.

The costs of the configuration can be measured in terms of silicon area, clock speed,

execution time of energy consumption and some of them can be set as the criteria

of the most suitable configuration.

Program Image and Processor Generation Finally the processor is gener-

ated by writing the fixed processor configuration details in a hardware description

language. The hardware description language files are fetched for each building

block from a database. This database can be reused in processor generation of same

technology.

Also the final bit image of the program to be executed in the processor is generated

during this final phase of design flow. For more information of the program image

and processor generation process refer to [14].

2.2.4 TCE Tools And File Formats Related to Exploration

The current development version of TCE provides a complete set of tools that are

needed for designing a TTA processor from the scratch. Some of the tools contain

graphical user interface (GUI) but most provide only a command line interface

(CLI). The tools are, however, designed in such a manner that GUIs may be added

quite easily in the future, if needed. The file formats and tools of TCE that are used

or produced by the exploration process are the following:

LLVM Byte Code The front-end compiler generates code from high level code

to LLVM byte code. This byte code is not TTA-specified and can be com-

piled against any TTA architecture. This byte code is the initial input of the

explorer.
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Architecture Definition File ADF is a file containing architecture description

of the processor. It is an input and output file of the design space explo-

ration. ADF is a file in XML format that contains description of the processor

architecture. ADF contains identified components and parameters for the pro-

cessor. ADF defines also constraints of the architecture template. The ADF

can be created and modified easily with a Processor Designer (ProDe) tool.

It is a tool with GUI for modifying all the components of the ADFs. ProDe

can be used for manual and partly manual design space exploration and also

to visualize the architectures. ProDe is not a necessary tool in TCE or in

automatic design space exploration but it is very useful tool because its good

presentation of the processor and it provides user a simple interface to modify

the ADF file.

Machine Implementation Description File Machine implementation descrip-

tion file (IDF) is a file that contains information of which component imple-

mentation is selected to implement an architecture component. It is an output

and optional input file of the design space exploration. Implementations for

architectures are stored in the IDF. IDF is an XML file which contains tags for

function units, register files and other necessary data to give the information

where the implementation details of each architectural component lies and

with which it is possible to synthesize the processor. IDF does not directly

tell the Hardware Description Language (HDL) file but it tells which entry of

the Hardware Database file is used to implement each architecture component

which finally tells the exact HDL description. Also IDFs for a ADF can be

created and modified easily with ProDe tool.

Hardware Database (HDB) HDB is a database that contains all the necessary

information of the building blocks needed by the tools of TCE. It consists of

provided and user defined processor building blocks, such as function units,

register files, sockets and buses.

The database contains architectural, cost and HDL implementation-specific

information of building blocks to make them usable in processor generation.

The data in HDB is stored in structured query language (SQL) relation tables.

The used SQL database engine is SQLite [15]. Tables and relations of the HDB

are sketched in Figure 2.7. Similar classes are implemented to represent the

data in objects. The tables include architecture details for both FUs and RFs

and implementation parameters. For each implementation there is a block

source file which contains the hardware block implementation information in

HDL. HDB can be viewed and edited with TCE tool HDBEditor.
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Figure 2.7: Relation Tables of HDB.

HDB is used by the explorer to look for architecture components and imple-

mentations. Also the estimator uses HDB to fetch cost data for implemen-

tations and the processor generator uses HDB when generating the processor

description as HDL.

Estimation Data Cost estimation is one corner stone of the exploration. The data

that the cost estimator produces is used to compare different configurations
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with each other. With the estimation data it is possible to see if the config-

uration fulfills the given requirements and which configuration is preferred to

another by terms of silicon area and energy consumption. The data must be

accurate enough and different data is needed numerous of times during the

design space exploration.

In TCE the cost estimation data is stored in HDB along the matching im-

plementations. The estimator fetches the data from HDB and builds a cost

database from it. This way the estimator is not dependent of the used technol-

ogy since each HDB contains data for the components in that specific HDB.

The estimation data can be obtained by analyzing the results of running logic

synthesis tools and hardware simulators [16]. This process, called the technol-

ogy characterization, can be automated and performed in advance and then

used through HDB by all exploration runs for the technology the data is gen-

erated against.

The estimation data consists of energy, delay and silicon area values. For

each clock cycle, an architecture component is assigned one of three energy

activities: Active, Stalled or Static, and Idle. During an active clock cycle the

component is performing its intended operation. For example, a register is

active when it is being read or written. Component is static when it is not

performing its intended operation but is holding information to be processed

later. A component is idle when it is not active or stalled. This method of

energy activities categorizing is referred to as the ASI method. [17] [18] [16]

The estimation data is used by the cost estimator that estimates if the pro-

cessor fulfills the given requirements. The hardware cost estimator is used to

evaluate the target processor area, energy consumption and execution time

of an application executed by the processor. The hardware cost estimator

uses HDB to look for the costs of the hardware components. In the easiest

case the HDB contains cost data for all of the processor components and the

estimator’s task is simply to add the costs together to get the result. The

target processor area and the execution time of the target application can be

calculated simply with the knowledge of the set of components in the target

processor. The energy estimate needs simulation data to get the execution

times of the components. If the HDB does not contain data that matches

the component details the cost estimator can use interpolation to find some

estimate for the components. The interpolation is done by finding the nearest

matching components and calculating the costs with linear interpolation. The

estimation of different components are detailed later in Section 3.1.

Program Image and Processor Image Program Image Generator (PIG) is an
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Figure 2.8: Tables and relations of DSDB.

application that generates a complete bit image of a TTA program in TCE

toolset. The program image is a bit-level representation of a TTA program

that is ready to be executed in a TTA processor where it is targeted to. [14]

Processor image is generated with Processor Generator (ProGe) tool that gen-

erates TCE designed processor as HDL for the hardware synthesis.

Design Space Database The Design Space Database (DSDB) is used as a storage

of explored configurations. DSDS is a database containing all the configura-

tions explored with the Design Space Explorer and cost estimations for them.

The explorer inserts new entry into the DSDB on each iteration it advances

the exploration process. Entry contains at least the architecture and in most

cases also the implementation and cost estimates for each application simu-

lated and estimated against the configuration. DSDB is internally an relational

database. Tables and relations of the DSDB are shown in the Figure 2.8. Each

full machine configuration has one architecture and implementation which are
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stored into the database in XML strings. For an incomplete configuration the

implementation can also be omitted to store only the architecture information.

Each architecture contains any number of cycle counts that is bound to number

of applications in the application set. The cycle count tells how many cycles

is needed to run the application and it is used to determine the timing of the

configuration. The application table contains a directory path where the ap-

plication directory is located on the disk. The implementation table contains

the implementation information and the estimates of the longest path delay

of the configuration and the chip area estimation. Each implementation can

contain energy estimates that are bound to the applications of the application

set. DSDB is implemented by using SQLite which is a software library that

implements a Structured Query Language (SQL) database engine and it does

not need a separate server process [15].

2.3 Design Space Exploration Process

Design space exploration process is sketched in Figure 2.9. Design space exploration

is a process of finding out the best possible set of processor components and their

implementations, which together can be considered as configurations, to run specific

applications with some restrictive requirements. These requirements may set limits

for the processor area or energy consumption and may include a time frame when

the results of the application must be ready. This limits the number and type

of resources, that a processor can contain and sets the goals for the design space

exploration.

The configuration exploration process can be divided into two phases, resource

optimization and connectivity optimization. The resource optimization phase modi-

fies the architecture in component level by adding and removing units. In this phase

all the configurations are fully connected and have enough buses not to limit the

schedule. All resulting configurations have different cost/performance ratio. The

most interesting configurations are such that are the fastest or the cheapest within

a specific requirements. These interesting points are called the Pareto points

[19, 20]. The results of this phase are fully connected configurations. The most

interesting configurations of the resource optimization phase are taken into the sec-

ond phase where the connectivity is optimized. In this phase the connections can

be removed to reduce the area of the processor. [21]

The design space exploration process is started with some kind of minimal config-

uration that a program can be compiled for. The configuration contains architecture

information and how the architecture components are implemented. This starting

point configuration can then be used as a target machine by the compiler which

together with scheduler creates the parallel program code that can be executed with
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Target application and requirements are given.
The exploration is started with a configuration
 that can be compiled.

Compile and schedule the program
against the configuration

Simulate the parallel program code 
and verify the program results

Estimate the
configuration

Try to generate a
better configuration

No better configurations
can be found. Finish the
exploration.

Modify the
 configuration

Figure 2.9: Exploration process.

the processor. This is where the iterative exploration process starts. Each iteration

may result in a better configuration or not. Results of all phases can be used as a

feedback for the next iteration and the process builds up as a loop where in each

cycle the architecture is modified and then the compilation and scheduling is done

followed by the compilation verification and analysis of the machine. These steps

may be needed to be repeated numerous of times before the final configuration is

found or there is always the possibility that the available components and compo-

nent implementations are insufficient to fulfill the given requirements and the task

is impossible no matter how good algorithms are processing the task.

Exploration is continued until the reasonable configurations are tested and no

better results can be found. All the configurations and results are gathered for

further inspection.
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2.3.1 Manual Design Space Exploration

The tasks of the exploration process can be performed manually. By doing the

exploration manually the designer can easily consider limitations and tricks that

he can to achieve better results. Controlling the design is easy and good methods

and common sense and experience can be utilized to create simple and effective

processor models. Manual exploration is also a good approach to prove some new

implementation or architectural designs. Special operations and components can

easily be tested in machine configurations and find out the best practices. These

practices can then be implemented to be used in automated design space exploration.

Also utilizing different scheduling algorithms is easy in manual process.

Disadvantage of manual exploration is that it takes lots of time and high concen-

tration from the designer to find out the best possible configuration. Good configu-

rations might be created quite fast if the designer can see where the bottlenecks are

but great results are much harder to achieve.

2.3.2 Semi-Automated Design Space Exploration

Semi-automated exploration is exploiting the automated tools and manually modi-

fies the most potential results. The automated exploration algorithms have always

some weaknesses that a good designer can easily patch by selecting reasonable com-

ponents or even creating some special operations or units. Other possibility is to

continue automated exploration from some manually modified configuration where

some drawbacks of the algorithms are taken into account. Also the automated pro-

cess may be guided manually by selecting some interesting configurations for further

exploration.

2.3.3 Automated Design Space Exploration

Automated design space exploration is a process where the most suitable processor

configuration is searched completely automatically. The designer’s task is just to

give the applications and requirements to the automatic explorer. The explorer

generates multiple configurations and finds out the best possible configuration with

the written algorithms. Automatic exploration performs all the exploration steps

automatically and stores the gathered data as a result database that can be inspected

afterwards. The advantage of an automated process is that it can try hundreds or

even thousands of different combinations when finding out the best solution. Doing

this manually would be far too time consuming and inefficient.
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2.3.4 Exploration in TCE

Since the TTA processor, like VLIW, itself does not contain the scheduling logic

the programs need to be scheduled in the time of compilation. The architecture of

the TCE scheduler is described in [22]. The compilation and scheduling depends

on the structure of the processor’s buses and components and the first step of ex-

ploration is to create a starting point TTA that contains the resources which are

needed to compile the programs. In TCE there is a simple base machine file called

minimal.adf that can be used as this initial architecture. TTA machine a is col-

lection of processor elements which in TCE are written in Architecture Definition

File the ADF. Processor elements of the ADF are detailed in Subsection 2.2.2. This

initial architecture is basically the minimal architecture the tcecc compiler can stull

compile any integer ANSI C programs for and so it contains all the needed opera-

tions for the first compilation. For a architecture component it is necessary to also

select an implementation that details the logic of the architecture component. With

the implementation information it is possible to fetch the correct HDL files from the

hardware block library. These HDL files are needed in cost estimation and processor

generation.
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3. TCE DESIGN SPACE EXPLORATION

FRAMEWORK

The design space framework in TCE consists of set of tools that the explorer core

uses. The high level package description of the design space explorer in TCE is shown

in Figure 3.1. The explorer core is called from a user interface which currently is

command line based. GUI is also planned and might be implemented later. The

explorer core is a client of different entities of TCE. The cost estimator is needed to

estimate the costs of the architecture components while the simulation is also needed

for the estimation. DSDB is used by the explorer to store the created configurations

and result data of the configuration from the cost estimator. Explorer uses the

scheduler for creating the parallel TTA code.

In this chapter the estimator package and the core of the explorer is discussed.

The estimator classes are described in Section 3.1 and the explorer classes later in

Section 3.2.

ExplorerUI

Explorer

Scheduler Simulator Estimator

DSDB

Figure 3.1: High level module relations of the design space explorer.
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3.1 Cost Estimator

The hardware cost estimator is responsible for evaluating the costs of the target

processor. Costs include the used chip area, energy consumption and the timing for

a set of applications. The maximum clock frequency of the processor configuration

can be obtained from the timing evaluation. Results of the cost esimator are mainly

used by the explorer to select the best implementations and components for the

target processor. The best implementation is often the one that fulfills the given

requirements but is minimal in costs. Estimation is an important phase of processor

designing. In mobile processing where the processing power is not the only desired

feature but the long battery life of the device is essential together with the processing

performance there is a great interest for designing low energy consuming chips as

possible. For example in these situations with a good approximation of energy

consumption can the designer straight away decide which architecture models are

too energy consuming and are not considered as final products.

Accuracy is the key aspect in cost estimation. The more accurate the estimate is

the more useful it gets. The most accurate cost estimations would possibly be done

by performing logic synthesis together with gate-level simulation for the complete

processor. Synthesis is far too slow for automated design space exploration where

there can be hundreds or thousands of processor models to estimate. Because the

time requirements the accuracy of the estimation must be compromised. By gener-

ating the cost data in advance the cost estimator can obtain accurate enough data

quickly. Good results can be generated by getting the costs of each component by

performing logic synthesis with gate-level simulation to each component in advance.

This can mean a huge amount of data and simulations if all variable changes must

be simulated in advance. This is why the estimator is implemented to create an

interpolation of the estimates where feasible if no strict match is found.

There are three different costs that are estimated from the processor. The area is

simply the total area of silicon that is needed by the configuration. The total area

is a sum of all sub areas that include areas of register files, function units, intercon-

nection and control logic. Energy consumption is the total energy of the processor

that it uses during a program execution including idle and active energies of the

components. Delay is a time that is spent by the components and transfers during

the execution. With delay estimations it is possible to estimate the speed of the

processor configuration by resolving the longest path of the processor. The longest

path of the processor is the maximum of the delay of any unit and the longest path

found in the interconnection network through the processor logic. Interconnection

network paths include all “output socket -> bus -> input socket” chains as well as

“output socket -> bus -> input socket -> FU” chains.
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Figure 3.2: Estimator class diagram.

In the following section it is described how the cost estimator design and imple-

mentation is carried out in TCE and how the different costs are estimated.

3.1.1 Estimator Design

The cost estimator like other parts of TCE is designed with flexibility in mind. In

cost estimation it is possible to experiment different algorithms. This requirement

leads to such design of the Estimator that most of the actual algorithmic work is

allowed to be redefined easily.

3.1.2 Estimator Implementation

Cost estimation process can be carried out in various of ways. Since the estimation

methods can be researched and improved the TCE cost estimator is implemented

to support different algorithms for estimation. The algorithms can be imported to
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the estimator as estimation plugin. Estimator plugins are used to implement the

estimation process. Each estimation plugin implements the interface of the base cost

estimator plugin class that contains all necessary methods to estimate the processor

components in terms of area, energy consumption and timing. Plugins may use

different data or handle the data differently to find the best possible estimation

results. Currently there are two kinds of cost estimation plugins implemented for

the TCE: the strict match estimators which use exact matches of the components

and the interpolating estimators which try to interpolate the missing component

costs. Figure 3.2 represents the class structure of the cost estimator. The Estimator

class contains methods to estimate different costs of the processor. The actual

implementations of the different estimators are implemented in the plugins.

Different components are estimated a bit differently so there are their own im-

plementations to estimate the FUs and the RFs and the interconnection network.

RF Estimation

The area estimation of RF is simple for the estimator since the area is already known

during the data generation in gate level simulation and it is stored in HDB with all

the other cost data of the components. The energy of an RF cannot be obtained

directly from the cost database. For the energy estimation as described in [18] the

cost estimator needs simulation data to know the register files are utilized. With

the utilization statistics the RF energy can be obtained as follows

ERF = EidleUidle +

n∑

read=1

m∑

write=1

Eread,writeUread,write (3.1)

Eidle is the idle energy of the RF (obtained from the cost database)

Uidle is the number cycles that the RF is idle (obtained from the simulation trace

database)

n is the number of read ports that the RF contains

m is the number of write ports that the RF contains

Eread,write is the energy of the RF consumed when read ports are read and write

ports are written (obtained from the cost database)

Uread,write is the number of times read reads and write writes occurs simultaneously

into the RF (obtained from the simulation trace database).
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FU Estimation

The area estimation of FUs is similar to RF area estimation. The value is simply

fetched from the HDB. For the energy estimation of FUs the simulation data is

again needed. The number of operation execution times is counted from each unit

and the execution times are multiplied with the pre-estimated energy consumption

of each operation. These estimates are also a result of gate level simulation and are

stored as costs in HDB. Equation 3.2 shows how the energy of FU is summed up.

EFU = EidleNidle +
∑

EkNk (3.2)

Eidle is the idle energy of the FU (obtained from the cost database)

Nidle is the number cycles that the FU is idle (obtained from the simulation trace

database)

Ek is the energy of the FU consumed for performing operation k once (obtained

from the cost database)

Nk is the number of times operation k was executed (obtained from the simulation

trace database).

Strict Match Estimators

Estimator can evaluate the costs using the exact costs of a component. In this

case all the cost data must be created earlier and added to the HDB. Strict match

estimation gives the best possible estimation values with the selected estimation

method. All the component costs are as near as possible to the real values. Strict

match estimator implementations are quite simple. They fetch cost data for each

component from the HDB. Result is gained by simply adding cost values of each

component to the result. Area estimation adds all of the component areas to the

result and there we have the area estimation. Energy estimation needs data from the

simulator to get the counts of operation usages, transfers to and from the registers

and idle times. These values are also fetched from the HDB and then added as result

when multiplied with the usage counts.

Interpolating Estimators

Making synthesis and gate-level simulations to all possible variations of components

would be very time consuming and the database would grow significantly. This is

why the amount of strict matches is reasonable to be compromised. With linear

interpolation it is possible and quite easy to obtain data with sufficient accurate for

such components which do not have strict match estimations. Having one similar
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Figure 3.3: Linear interpolation.

component estimated with greater and smaller variable the estimate can be counted

with a linear equation from the lower point to the higher. The interpolating esti-

mators in TCE use own data structure build as the CostDatabase where all cost

information from HDB is collected.

All parameter variations are not suitable for linear interpolation. In RFs the most

reasonable variable for interpolation is the number of registers. The costs grow quite

linearly when more registers are added so it is not necessary to synthesize cost data

for all possible register number combinations for a RF. However, more accurate

results can be interpolated if there are some estimates between the minimal number

and the maximum (reasonable) number of registers. Figure 3.3 shows how the

estimate is interpolated from the existing cost data. The nearest greater and smaller

value is selected for the interpolation and the cost is

y = y0 + (x− x0)
y1 − y0

x1 − x0

. (3.3)

3.2 Explorer

Explorer in TCE consists of multiple classes. Figure 3.4 details the classes and

relations of the explorer. The classes shown in the class diagram are described in

the following sections.

3.2.1 Design Space Explorer

Design space explorer is the front-end of the explorer. It is a class that hides the com-

plex call hierarchies from the user, which is a realization of façade design pattern

[23]. Design space explorer interface provides methods to automatically evaluate
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Figure 3.4: Explorer class diagram.

machine configurations and to select best implementations to the processor com-

ponents according to the test applications set in Design Space Database (DSDB).

Command line interface uses the methods of DesignSpaceExplorer class to relay the

parameters given by the user for the explorer. Through the front-end class it is

possible to get the DSDB instance and output the results for the user.

3.2.2 Design Space Database

Design Space Database (DSDB) is a database containing the exploration specific

data. The database holds ADF and IDF files of configuration and data that is

estimated against these files. The database is used through DSDBManager class

which contains methods to create queries to the database. It is possible to perform all

needed data inserts and queries to add and get all the data with the DSDBManager.

The used database is currently SQLite but the idea of the DSDBManager class is

that the database technique can be changed by modifying only the front-end class

and no changes for the DSDBManager client is needed. The architectures and

implementations in the database can also be written as ADF and IDF files with the

DSDBManager.
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3.2.3 Design Space Explorer Algorithm Implementation

Design space explorer algorithms are implemented as design space explorer plugins.

Explorer plugins can be parts of the exploration chain or they can contain fully func-

tional explorers. The main idea of the plugin approach is the easy modularization

of the exploration process. With plugins the big complex exploration scheme can

be split to small blocks that can be tested and developed separately. One approach

could be that plugins are small explorers that can call other exploration plugins so

the final exploration output may be a result of many phases where the design space

is travelled to and forth in multiple steps. One advantage of the plugin approach

is also that new plugins are easy to create and import in future so that researches

can use their own exploration algorithms instead of the ones that are done into the

TCE distribution. Developing explorer in small sub explorers gives also researchers

and developers plenty of possibilities to do the small sub-tasks in order they find

the best.

Algorithms can be controlled with parameters. Parameters can be passed to

algorithms as pairs of name and value. Using parameters in the algorithms’ imple-

mentations is fully optional. Each algorithm may have operability guided with own

parameters if appropriate or algorithms can be so called pure algorithms.

There are a few required inputs for the algorithms. These are the name of the

algorithm and the DSDB where the results are stored. Also the ID of the configu-

ration where the algorithm begins to make progress is needed when the algorithm

is launched.

All the results of the implemented exploration plugins are added into the DSDB.

Results of the exploration plugins include the ADF and the IDF files and the calcu-

lated estimations of the configurations. From DSDB the results can be fetched for

later use, for observing or manual fine tuning.

3.2.4 Component Implementation Selector

The purpose of the component implementation selector is to provide methods for

selecting suitable implementations to the given architecture components. The com-

ponent implementation selector uses HDB to look for the implementations and re-

turns a set of suitable implementations that fulfill the given cost requirements such

as the clock frequency or the gate area of the component. ComponentImplemen-

tationSelector class uses the cost estimator to estimate the costs of the suitable

implementations and determines from the results if the implementation is good for

this purpose. The class has methods for searching suitable implementations for

function units, register files and immediate units. Implementations are searched for

matching the given architecture and meet the speed and area requirements if given.
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The component implementation selector can search suitable implementations from

multiple HDB files. The returned implementation location tells the HDB and the

entry of the HDB where the implementation lies.

3.2.5 Cost Estimates

Cost estimates are estimates for a machine configuration (ADF+IDF). The CostEs-

timates class stores the estimates of each configuration. These estimates include the

area of the processor configuration which is presented as number of gates. Longest

path delay is the delay of the processor’s critical path that is the speed bottleneck

of the configuration. The longest path delay value is presented in nano seconds.

The energy consumption of the configuration while processing the used application

is presented in milli joules. The fourth estimate value is the cycle count of the pro-

cessor with the current configuration and application which is presented in number

of clock cycles. The area and the longest path delay are constants to one machine

configuration while there can be multiple programs run with that configuration.

Therefore there can be multiple energy consumption estimations and cycle counts

as well out of one machine configuration. Each energy consumption and cycle count

is bound to one application that can be run with the machine configuration.

3.2.6 Test Application

Test application class is a helper class for the explorer to handle application specific

files. The applications that are run with the TTA processor being explored are

inserted into the test application directories. These directories contain files that are

needed by the explorer to ensure the correct functionality and speed requirements of

the processor configurations. Files include instructions to simulate the program and

verify the simulation. Methods include checkers for files and getters for simulation

execution and simulation output verification files:

• description(): A method that returns description file of the test application

directory.

• correctOutput(), A method that returns the correct program output string for

ensuring the architecture functioning.

• setupSimulation(): A method that sets up the simulation run by running the

setup script of the test application directory.

• simulateTTASim(): A method that returns an input stream to simulate.ttasim

file of the test application directory which can be given to the TTA simulator.
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• maxRuntime(): A getter method that returns the maximum runtime require-

ment of the test application.

• applicationPath(): A method that returns a directory path of the sequential

program file of the test application directory.

• verifySimulation(): A method that executes the verify script of the test appli-

cation directory. Return value is true if the verifying was a success.

• hasApplication(): Returns true if ’program.bc’ file is in the test application

directory.

• hasSetupSimulation(): Returns true if ’setup.sh’ file is in the test application

directory.

• hasSimulateTTASim(): Returns true if ’simulate.ttasim’ file is in the test ap-

plication directory.

• hasCorrectOutput(): Returns true if ’correct_simulation_output’ file is in the

test application directory.

• hasVerifySimulation(): Returns true if ’verify.sh’ file is in the test application

directory.

• hasCleanupSimulation(): Returns true if ’cleanup.sh’ file is in the test appli-

cation directory.

Test application directory must have at least the files for the sequential program

and a way to verify the output. Also the maximum runtime is needed for creating

reasonable TTAs.
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4. EXAMPLE EXPLORATION ALGORITHM

The design space explorer’s brains are in the exploration algorithms. Explorer algo-

rithms are the guide for the explorer to do it’s job. These algorithms can always be

improved and new ideas invented. This is why the explorer algorithms can be added

as runtime libraries for the Design Space Explorer. Explorer algorithms can be im-

plemented as code sections that are derived from the DesignSpaceExplorerPlugin

class which can be seen in Figure 3.4. Plugins need to re-implement the explore()

method of the parent class where the plugin algorithm functionality and complexity

is hidden. Plugins can be used with explorer after compiling. Compiling can be

done with the aid of script named buildexplorerplugin.

Algorithms store all results to Design Space Database (DSDB). The starting

point configuration is given for the plugins and it can be any of the configurations

added to the DSDB. Configurations include initial architecture and architecture

implementation. Architecture implementation may also be empty as can be the

architecture when the plugin starts exploring from the scratch.

Plugins can be guided with parameters passed from the explorer application.

Parameters can be given as name-value pairs.

4.1 Frequency Sweep Explorer Algorithm

Frequency sweep is an exploration algorithm that travels through the design space by

setting one frequency at a time as a target frequency of the processor configuration.

The frequency limits and the interval are given by user. Frequency sweep is done by

using the lowest frequency first and then stepped towards the upper limit. Eg. if the

target limits are 100-200MHz and the interval is 50MHz would the algorithm try to

generate processor configurations with frequencies 100MHz, 150MHz and 200MHz.

The plugin parameters and their explanations are shown in Table 4.1.

Frequency sweep algorithm tries first to optimize the number of cycles needed to

run the programs. This part is described in Section 4.2. Minimizing the cycle count

in the first stage of exploration is done to achieve less energy consumpting results.

Smaller cycle count ends up to lower clock frequency needs and most possibly less

energy consuming processors.

Second phase of the algorithm is to optimize the execution time. In this phase

are the implementations to each component selected. The interconnection network
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Parameter Name Purpose
start_freq_mhz Frequency sweep starting frequency in MHz.
end_freq_mhz Frequency sweep ending frequency in MHz.
step_freq_mhz Interval of the frequency sweep in MHz.
superiority This parameter is passed further to the cycle count minimiza-

tion plugin to indicate how many percents better must the
new cycle count be compared to the previous one to continue
the cycle count optimization.

Table 4.1: Parameters

(IC) is optimized after selecting the components. The second phase algorithm is

described in Section 4.3

Finally if the previous phases constructed configurations that fulfills the require-

ments then the algorithm is advances to the final optimization phase. These opti-

mizations are described in Section 4.4. The final optimization is not yet implemented

in the current version of the Frequency sweep algorithm but it can be added easiest

by creating the functionality in a separate explorer plugin.

1: minF ⊲ User given parameter for minimum frequency.
2: maxF ⊲ User given parameter for maximum frequency.
3: stepF ⊲ User given parameter for step frequency.
4: superiority ⊲ User given parameter.
5: C ⊲ Configuration
6: currentF ← minF
7: cycleOptArchs← OptimizeCycleCount(C, superiority)
8: repeat
9: for all cycleOptArch in cycleOptArchs do

10: if fastEnough(cycleOptArch, curMhz) then
11: minArch← minimizeMachine(cycleOptArch)
12: minConf ← selectImplementations(minArch)
13: icOptimize(minConf) ⊲ Also stores the optimized configuration

into the DSDB.
14: end if
15: end for
16: currentF ← currentF + stepF
17: if currentF > maxF then
18: currentF ← maxF
19: end if
20: until currentF 6= maxF

Figure 4.1: Frequency sweep algorithm.
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1: procedure OptimizeCycleCount(C, superiority)
2: minCyclesn ←MinCycleCount(C)
3: minCyclesn−1 ← 0
4: repeat
5: Cbest ← C
6: minCyclesn−1 ← minCyclesn

7: C ← AddResources(C)
8: minCyclesn ←MinCycleCount(C)
9: until minCyclesn < minCyclesn−1&&(superiority/100 ∗minCyclesn−1) <

(minCyclesn−1 −minCyclesn)
10: return Cbest

11: end procedure

Figure 4.2: Cycle count optimization algorithm.

4.2 Cycle Count Optimization

Pseudo code of the cycle count minimization algorithm is sketched in Figure 4.2.

The algorithm is implemented in the GrowMachine exploration plugin. Goal of the

algorithm is only to minimize the cycle count, so no estimation or implementation

selection is done and the configuration Cbest will have lots of extra resources.

To achieve the minimal cycle count are the resources of the processor increased

so much that the processor architecture has enough resources to process the code in

optimal amount of clock cycles. In the algorithm sketched in Figure 4.2 the resources

of the configuration C are grown in each cycle of the repeat-until loop. The minimum

cycle count is then counted for the intend application set. The minimum amount of

clock cycles is reached when the scheduler can no longer make significantly better

results. The percentage value when the result is no longer considered better even

if there is a slight improvement can be given by the user. This gives the a way to

optimize the exploration time when the largest configurations are already selected

out and there is no need to schedule and estimate the runtime of those configurations.

The algorithm returns the fastest configuration it founds. Still as all the inter-

mediate results are also stored in the DSDB is the results after this phase a set of

architectures that have large number of resources but the scheduled programs to

these architectures are executed efficiently.

4.3 Execution Time Optimization

After the minimum number of clock cycles needed by the architecture to run the

specified applications are found, the execution time constraints of the applications

are considered if they are possible to achieve. Execution time is bound to the clock

cycle count and the clock frequency of the processor. The clock cycle count cannot
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be improved at this point but the clock frequency can be tuned up with selecting

suitable components and making the connection network as fast as possible. These

actions will certainly weaken the cycle count performance and so it is first calculated

if it is possible to meet the runtime requirements with one target frequency. One

frequency is set as target at a time beginning the lowest frequency and stepped

towards the highest.

Execution time optimization removes extra components from the machine that

were generated in the cycle count optimization phase. The resource removal is im-

plemented in the MinimizeMachine explorer plugin. After the resource minimization

the implementations are selected for every component. The interconnection network

can be optimized after the implementation selection. This is done with another ex-

plorer plugin SimpleICOptimizer.

4.3.1 Selecting Components

Architecture component implementations are selected to meet the target processor

frequency. Too fast component implementations may contain more logic that takes

area and consumes energy. That is why the components are selected to be fast

enough but the costs of the components low as possible. If multiple candidate im-

plementations for the component are found is the smaller input and delays preferred.

If there still are multiple possibilities the least energy consuming implementation is

selected.

It is always possible that the given architecture is the speed bottleneck of the

processor and the time requirements are not met. In these cases there are no possible

implementations for given function unit architecture. The function architecture can

be changed by raising the latency of the FU. This way suitable implementations

may be found.

4.3.2 Removing Unnecessary Components

Unnecessary components are removed by minimizing the machine. Purpose of the

Minimize machine algorithm is to remove resources from the processor architecture

until the real time requirements of applications are not reached anymore. Minimizing

the machine thereby optimizes the resources of the machine by reducing the extra

ones.

At first the maximum running time of each application that the machine should

run is converted to cycle count. If no maximum run time is given, there is no

time limit and the maximum cycle count that the processor is allowed to run the

application is unlimited as long as the application can be executed. Figure 4.4 shows

the maximum cycle count computation.
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After the maximum cycle counts have been computed the resources are reduced.

At first the not needed buses are removed. After that possible extra function units

and finally extra register files are removed. Minimizing the number of buses is

done by removing some number of buses from the original architecture. After the

removal the configuration is evaluated against each program. If any of the cycle

counts exceeds the calculated minimum cycle count is the number of removed buses

too high. Otherwise more buses can be tried to remove. Binary search algorithm is

used for solving out the number of buses that can be removed. With binary search

the number of iterations can be optimized. The minimizing of buses is shown in

Figure 4.3. The returned configuration is minimized in number of buses because if

more buses are removed the cycle counts get too high. The algorithm implements a

binary search algorithm and thereby it has an efficiency of O(log n).

After the buses have been minimized the FUs are minimized. At first the FUs in

the architecture are analyzed and the number of similar units is counted. Then each

type of FUs is tried to be reduced and after each removal the architecture is tested

to still reach the requirements. If the removal prevents the configuration to meet

the requirements the last working configuration is restored and next type of FU is

tried to remove. RFs are minimized after the FU minimization and it is carried out

similarly to FU minimization. After other minimizations the sockets that no longer

connect any units are removed from the machine.

4.3.3 IC Optimization

Removal of the unneeded connections and sockets reduces the energy consumption

and area needed by the configuration. The IC can be simply optimized by removing

the connections that are not used. This is an easy way of reducing the connectivity.

After this every connection removal means that the schedule has to be changed. The

SimpleICOptimizer plugin that currently implements the interconnection network

optimization first schedules optimized configuration to get the parallel program code.

Then it removes all the connections from the machine and adds those connections

back in place that are used in the scheduled program instructions. This way all the

extra connections that are not used can be removed. Those sockets and units that

no longer are connected to any buses can now also be dropped out. Finally the

functionality if the new optimized configuration is tested.

4.4 Final Optimization

The final optimization phase is not yet implemented in the current explorer but the

original plan is described as follows.

In the final phase the explorer has a set of configurations that are fast enough
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1: high H ← Cb ⊲ Cb is the number of buses in configuration
2: low L← 1
3: middle M ← (L + H)/2
4: for all a in set of applications A (that should be run with the configuration C)

do
5: if cycles of application in current configuration aC > amax then return C
6: end if
7: end for
8: while L < M do
9: minimized configuration c← Cb −M

10: lowerM ← true
11: for all a in set of applications A that should be run with the configuration

C do
12: if cycles of application in minimized configuration ac > amax then
13: L←M + 1
14: M ← (L + H)/2
15: lowerM ← false
16: end if
17: end for
18: if lowerM = true then
19: H ←M − 1
20: M ← (L + H)/2
21: end if
22: end while
23: return c

Figure 4.3: Minimizing buses.

1: for all max runtime r in set of applications A (that should be run with the
configuration C) do

2: if ¬r then
3: return ∞
4: end if
5: amax ← r ∗ fc ⊲ fc is the running frequency in MHz
6: end for
7: return amax

Figure 4.4: Maximum cycle count computation.

from the previous steps of exploration. The final optimization concentrates on three

things. Firstly can the FU’s be changed to ones with smaller latency implementa-

tions. If the configuration still fulfills the requirements after a FU change it can and

will be done. Secondly all the components are considered if some can be changed

to one with smaller energy consumption. Finally all the components are considered

if they can be changed to ones with smaller area. These three optimization checks

makes the result configuration to be fastest, least energy consuming and smallest in
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1: for all Configuration c in set of configurations C do ⊲ Each configuration from
previous steps are optimized.

2: ChanceFUsToSmallerLatency(c)
3: ChangeComponentsToMinimizeEnegy(c)
4: ChangeComponentsToMinimizeArea(c)
5: end for

Figure 4.5: Final optimization algorithm.

area with the available set con component implementations. The idea of the algo-

rithm can be seen in Figure 4.5. The configuration is always evaluated to still reach

the given requirements after component changes so the called methods should alter

the given reference configuration only if the configuration is optimized in some way.

After the final optimization phase the frequency sweep algorithm has done it’s

best to find configurations against one clock frequency. The exploration will then

continue from the next clock frequency step.
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5. BENHMARKING AND VERIFICATION

The explorer plugins were tested against three different benchmark applications:

two different Discrete cosine transform (DCT) applications, one that computes the

transform to a 8 x 8 matrix and other that computes 32 bit transforms and one of

the benchmark applications implements the Viterbi algorithm introduced in [24].

5.1 Algorithm Verification

To verify the Frequency sweep algorithm the sub-algorithms were verified to function

as they were intent to. Then the Frequency sweep exploration algorithm was tested

in whole.

5.1.1 Verification of GrowMachine plugin

The GrowMachine exploration algorithm Section 4.2 is used first by the Frequency

sweep. In Table 5.1 is shown how the GrowMachine algorithm have optimized the

cycle counts of the Viterbi application. The superiority was set to one (1) percent

and the algorithm ended after the Row 10 when the cycle count improvement was no

longer better than one percent. Rows 2-9 were then selected to further investigation.

Table 5.1: Viterbi cycle count optimization.

Row Program Cycles Improvement %
1 viterbi 31147383 -
2 viterbi 6548954 78,9743%
3 viterbi 3945912 39,7474%
4 viterbi 2631193 33,3185%
5 viterbi 2021880 23,1573%
6 viterbi 1726200 14,624%
7 viterbi 1621128 6,0869%
8 viterbi 1565642 3,42268%
9 viterbi 1549802 1,01173%
10 viterbi 1548746 0,061377%

The total drop of the cycle count in this case was nearly 95% from the original

architecture.
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5.1.2 Verification of MinimizeMachine Plugin

The MinmizeMachine removes resources from the architecture until the speed re-

quirements are not met anymore. MinimizeMachine algorithm was tested by adding

components to a already minimized machine and running the algorithm against

this architecture. The algorithm successfully removed the extra components and

stopped when the cycle count and target frequency limited the removing of more

components.

5.1.3 Verification of SimpleICOptimizer Plugin

The SimpleICOptimizer algorithm removes the connections that are not used by the

scheduled program. When started the algorithm with a fully connected architecture

that was generated for the DCT8x8 program the architecture contained total of

374 bus to socket connections. After the SimpleICOptimizer algorithm was the

number of connections dropped to 345 giving total of 39 removed connections. This

connection removal changed also the area estimate to drop from 22632 gates to 21146

gates.

5.2 Testing of Example Algorithm FrequencySweep

Table 5.2 represents exploration results of program that counts the DCT 8 x 8 ma-

trix. The exploration was run by using the FrequencySweep algorithm and sweeping

frequencies from 50MHz to 200MHz with 50MHz steps. The maximum execution

time of the program was set to 0,01 seconds. In Figure 5.1 the graph contains the

chip area (gates) and energy estimate (mJ) of the generated configurations. The

figure presents those points of the exploration results where the speed requirements

were fulfilled and the functionality of the program was tested to work correctly. The

FrequencySweep algorithm takes care that the execution time limit is not theoreti-

cally exceeded when running the program with target frequency. Points in the result

table and graph are placed in the same order the configurations were generated by

the algorithm developed in this thesis. The peaks in the graph are the points from

the first configurations of each sweeping frequency optimized successfully in basis

of the cycle count minimization. Then the reducing of the components is shown in

decreasing chip area and energy. In Figure 5.2 the execution time of the DCT 8

x 8 program is drawn with the energy values. The execution time is calculated by

dividing the cycle count numbers with the target frequencies. All the configurations

fulfill the execution time constraint.

In Table 5.3 are the results given by the Frequency sweep algorithm when ex-

plored against the Viterbi program. The program was given a maximum execution

time of 0,1 seconds and the frequencies 50MHz to 200MHz with steps of 100MHz.
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Figure 5.1: DCT 8x8 energy and area of configurations.

Figure 5.3 shows the energy and area values of the configurations after the explo-

ration. The results are quite similar to the DCT8x8 program and the speed limits

Table 5.2: DCT8x8 Results

Row Target MHz ID Program Cycles Energy Path Area
1 50 83 dct8x8 198791 0,01837610 14,01 23485,10
2 50 147 dct8x8 198791 0,00651983 13,51 21146,80
3 50 200 dct8x8 198791 0,00642959 13,15 17625,80
4 50 241 dct8x8 198791 0,00550757 13,04 14738,90
5 50 270 dct8x8 199047 0,00494168 12,79 11649,90
6 100 346 dct8x8 198791 0,01837610 14,01 23485,10
7 100 410 dct8x8 198791 0,00651983 13,51 21146,80
8 100 463 dct8x8 198791 0,00642959 13,15 17625,80
9 100 504 dct8x8 198791 0,00550757 13,04 14738,90
10 100 533 dct8x8 199047 0,00494168 12,79 11649,90
11 150 608 dct8x8 1025441 0,08510110 13,98 18199,80
12 150 671 dct8x8 1025441 0,02898850 13,48 15987,80
13 150 723 dct8x8 1025409 0,02866230 13,12 12654,00
14 150 763 dct8x8 1028737 0,02385550 13,01 9901,50
15 150 791 dct8x8 1096166 0,02101670 12,76 6900,25
16 200 866 dct8x8 1025441 0,08510110 13,98 18199,80
17 200 929 dct8x8 1025441 0,02898850 13,48 15987,80
18 200 981 dct8x8 1025409 0,02866230 13,12 12654,00
19 200 1021 dct8x8 1028737 0,02385550 13,01 9901,50
20 200 1049 dct8x8 1096166 0,02101670 12,76 6900,25
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Figure 5.2: DCT 8x8 execution time and energy of configurations.

Table 5.3: Viterbi Results

Row Target Mhz ID Program Cycles Energy Path Area
1 50 117 viterbi 5952840 0,690206 13,46 29688,60
2 50 213 viterbi 5952841 0,736374 13,25 26757,80
3 50 298 viterbi 5952840 0,669696 13,17 23083,80
4 50 372 viterbi 5970264 0,560587 14,01 20092,60
5 50 434 viterbi 5952840 0,226883 13,49 17489,60
6 50 485 viterbi 5953368 0,224529 13,13 13712,60
7 50 524 viterbi 5952840 0,193082 13,02 10569,60
8 150 632 viterbi 8645661 0,880884 13,45 27153,60
9 150 729 viterbi 8645662 0,972640 13,24 24078,60
10 150 815 viterbi 8645661 0,885556 13,16 20714,30
11 150 890 viterbi 8646189 0,777804 13,98 18070,30
12 150 953 viterbi 8645661 0,305352 13,48 15858,40
13 150 1005 viterbi 8645661 0,302699 13,12 12524,60
14 150 1045 viterbi 8646189 0,261887 13,01 9772,10
15 150 1073 viterbi 8649359 0,235679 12,76 6834,85
16 200 1181 viterbi 15254700 1,354640 13,49 23935,60
17 200 1278 viterbi 15254701 1,503230 13,28 21269,10
18 200 1364 viterbi 15254701 1,367210 13,20 18341,80
19 200 1439 viterbi 15254700 1,202170 14,02 16060,90
20 200 1502 viterbi 15254700 0,459604 13,52 14238,10
21 200 1554 viterbi 15254700 0,455299 13,16 11322,60
22 200 1594 viterbi 15254700 0,392275 13,05 8935,60
23 200 1622 viterbi 15254701 0,352727 12,80 6381,10
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Figure 5.3: Viterbi energy and area of configurations.

are not exceeded. Figure 5.4 shows the execution times and energies of the result

configurations. The figure shows that the execution time is not exceeded.

Table 5.4 shows the results from the DCT32 program when maximum time limit

was set to 0,005 and frequencies swept from 100MHz to 600MHz in steps of 250MHz.

In cases of 100MHz and 350MHz the resulting configurations were equal. In case of

600MHz target frequency the HDB did not contain any implementations that would

have been fast enough and no configurations could be found.

It was also tested though that when the time constraint was too tight there were

no results. The Frequency sweep algorithm was stated as deterministic by running

the same tests multiple times with same results.

Table 5.4: DCT32 Results

Row Target MHz ID Program Cycles Energy Path Area
1 100 45 dct32 108314 0,00236824 13,05 9090,25
2 100 74 dct32 108314 0,00208706 12,80 6474,25
3 350 115 dct32 108314 0,00236824 13,05 9090,25
4 350 144 dct32 108314 0,00208706 12,80 6474,25
- 600 - dct32 - - - -
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Figure 5.4: Viterbi execution time and energy of configurations.
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6. CONCLUSIONS

The existence of a mathematical cost function is necessary to find an optimum.

Finding the minimum of the cost function is achieved by using advanced mathemat-

ical algorithms. This is understood by the term automation. Very often finding the

optimum requires human interaction. The automated design space exploration tool

created and described in this thesis is a tool that makes it possible to run and test

ideas and algorithms of a designer in the area of design space exploration of TTAs.

The implemented example algorithm of the exploration tool can guide the designer

to find and choose the optimal design. The optimum might need some fine tuning

from the designer but at least it gives the right direction and idea of which kind

of configuration works best. Also it is a good example if new algorithms are being

developed.

This thesis presented a design framework of TTA design space exploration and

an automated tool to exploit it. The thesis describes the exploration process in

TCE by using the available toolset. Furthermore the thesis describes the explorer

application and the example algorithm for the explorer.

The exploration algorithms are designed to be modular and such that it is easy to

attach and create new exploration and estimation algorithms as plugins. Estimation

is also designed to be technology independent. The exploration plugins can have

any number of parameters and may use other exploration plugins.

The results that were achieved by testing the example algorithm show that the

framework can give results in right direction. The algorithm is proved to produce

working configurations. Ideas for further development can be obtained from the

exploration results. The explorer also shows that the TCE framework is functional.

In conclusion, there are still many things to develop to create a better exploration

results more easily. One thing is to create such an interpolating estimator that can

handle more variations in the estimated components. This would ease the initial

work for creating cost estimation data for each technology which is currently a

very time consuming process and takes lots of megabytes which also slows down

the actual exploration. Of course this would decrease the accuracy of the estimate

but would give an easier and faster way to compare different technologies. Other

improvement places include the different optimization phases of the exploration.

The result given by the described algorithm is not final and can be optimized at



6. Conclusions 44

least in connectivity. Also the interaction between the compiler could be better by

giving parameters. Also a GUI for explorer would be a good way to visually see the

differences of the configurations and to manage the flow. Adding a GUI is possible

since the architecture is designed in such way that different interfaces can be built.



45

BIBLIOGRAPHY

[1] P. Ienne and R. Leupers, Customizable Embedded Processors: Design Technolo-

gies and Applications (Systems on Silicon). San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2006.

[2] J. A. Fisher, “Very long instruction word architectures and the ELI-512,” in

ISCA ’83: Proc. 10th Int. Symp. Comput. Arch. Los Alamitos, CA, USA:

IEEE Computer Society Press, 1983, pp. 140–150. [Online]. Available:

http://portal.acm.org/citation.cfm?id=801649

[3] H. Corporaal, Microprocessor Architectures: from VLIW to TTA. Chichester,

UK: John Wiley & Sons, 1997.

[4] M. F. Jacome and G. De Veciana, “Design challenges for new application

specific processors,” Design & Test of Computers, IEEE, vol. 17, no. 2, pp.

40–50, 2000. [Online]. Available: http://dx.doi.org/10.1109/54.844333

[5] J. Heikkinen, “Program compression in long instruction word application-

specific instruction-set processors,” Ph.D. dissertation, Tampere University of

Technology, 2007, See http://tce.cs.tut.fi/.

[6] ——, “DSP Applications on Transport Triggered Architectures,” Master’s the-

sis, Department of Electrical Engineering, Tampere University of Technology,

Tampere, Finland, May 2001, See http://tce.cs.tut.fi/.

[7] P. Jääskeläinen, “Instruction Set Simulator for Transport Triggered Ar-

chitectures,” Master’s thesis, Department of Information Technology,

Tampere University of Technology, Tampere, Finland, Sep 2005, See

http://tce.cs.tut.fi/.

[8] H. Corporaal and M. Arnold, “Using transport triggered architectures for em-

bedded processor design,” Integrated Computer-Aided Eng., vol. 5, no. 1, pp.

19–38, 1998.

[9] Move Project Home Page at Tampere Univ. of Tech.,

“http://www.cs.tut.fi/˜move,” Dec 2006. [Online]. Available:

www.cs.tut.fi/˜move

[10] Tampere Univ. of Tech., “TCE project at TUT,” http://tce.cs.tut.fi. [Online].

Available: tce.cs.tut.fi



BIBLIOGRAPHY 46

[11] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong pro-

gram analysis & transformation,” in Proc. Int. Symp. Code Generation and

Optimization, Palo Alto, CA, March 20–24 2004, p. 75.

[12] A. Cilio, H. J. M. Schot, and J. A. A. J. Janssen, “Architecture Definition

File: Processor Architecture Definition File Format for a New TTA Design

Framework,” Internal Project Document, Tampere Univ. of Tech., Tampere,

Finland, 2003-2006.

[13] T. V. Korhonen, “Tools for Fast Design of Applications-Specific Processors,”

Master’s thesis, Department of Information Technology, Tampere University of

Technology, Tampere, Finland, Jan 2009.

[14] L. Laasonen, “Program Image and Processor Generator for Transport Trig-

gered Architectures,” Master’s thesis, Department of Information Technol-

ogy, Tampere University of Technology, Tampere, Finland, Apr 2007, See

http://tce.cs.tut.fi/.

[15] The SQLite Development Team, “SQLite, SQLite is a in-process library

that implements a self-contained, serverless, zero-configuration, transac-

tional SQL database engine.” http://www.sqlite.org/. [Online]. Available:

http://www.sqlite.org/

[16] T. Pitkänen, R. Mäkinen, J. Heikkinen, T. Partanen, and J. Takala, “Low-

power, high-performance TTA processor for 1024-point fast Fourier transform.”

in Embedded Computer Systems: Architectures, Modelling, and Simulation, ser.

Lecture Notes in Computer Science, S. Vassiliadis, S. Wong, and T. Hämäläinen,

Eds. Heidelberg, Germany: Springer-Verlag, 2006, vol. 4017, pp. 227–236.

[17] T. S. Karkhanis and J. E. Smith, “Automated design of application specific

superscalar processors: an analytical approach,” in ISCA ’07: Proc. Int.

Comput. Arch. New York, NY, USA: ACM, 2007, pp. 402–411. [Online].

Available: http://portal.acm.org/citation.cfm?id=1250712

[18] T. Pitkänen, “Experiments of TTA on ASIC Technology,” Master’s thesis, De-

partment of Information Technology, Tampere University of Technology, Tam-

pere, Finland, Aug 2005, See http://tce.cs.tut.fi/.

[19] R. K. Brayton, Sensitivity and Optimization. New York, NY, USA: Elsevier

Science Inc., 1980.

[20] G. De Micheli, Synthesis and Optimization of Digital Circuits. New York:

McGraw-Hill International Editions, 1994.



BIBLIOGRAPHY 47

[21] J. Hoogerbrugge, “Code generation for transport triggered architectures,” Ph.D.

dissertation, Delft University of Technology, The Netherlands, 1996.

[22] A. Metsähalme, “Instruction Scheduler Framework for Transport Triggered Ar-

chitectures,” Master’s thesis, Department of Information Technology, Tampere

University of Technology, Tampere, Finland, Apr 2008.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Addison-

Wesley, 1995.

[24] G. D. Forney, “The Viterbi algorithm,” Proceedings of the IEEE,

vol. 61, no. 3, pp. 268–278, 1973. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1450960


