Puolijohteisiin kuuluvasta piistä valmistetaan tällä hetkellä käytännössä kaikki maailman mikroprosessorit, joita löytyy tietokoneista tiskikoneisiin ja älykelloista autoihin. Nykyinen tietoyhteiskunta on riippuvainen mikrosiruista, joita Euroopan komission mukaan valmistettiin vuonna 2020 maailmanlaajuisesti biljoona kappaletta. Lisätäkseen omavaraisuusastettaan Eurooppa panostaa merkittävästi puolijohdeteknologian kehittämiseen esimerkiksi uuden sirusäädöksen avulla (European Chips Act).
Sähköiset mikropiirit ovat olleet käytössä jo pitkään ja niiden kysyntä jatkuu. Nyt rinnalle ovat tulossa valoon perustuvat mikropiirit, jotka voivat siirtää enemmän dataa nopeammin. Valon hyödyntäminen luo myös mahdollisuuksia mikropiireissä uusille ominaisuuksille, joita voidaan käyttää esimerkiksi kaasujen ja biologisten merkkiaineiden tunnistuksessa. Heidi Tuorila kertoo, että haasteena on kehittää pienikokoista teknologiaa, joka mahdollistaa suurten laboratoriolaitteiden pakkaamisen yhdelle sirulle, vaikkapa älykelloon.
– Tulevaisuudessa älykello voisi esimerkiksi seurata veresi merkkiainepitoisuuksia ilman retkeä verikokeisiin, Tuorila visioi.
Laajemmasta näkökulmasta piimikrosirujen sisältämien äärimmäisen pienikokoisten rakenteiden valmistaminen itsessään ei ole uutta, mutta vaatii suuria investointeja kehittyneisiin puhdastiloihin ja laitteistoihin. Valoon perustuvien piirien valmistuksessa uusia puolijohdemateriaaleja tarvitaan nimenomaan sirujen valonlähteiksi. Näiden lasersirujen liittäminen osaksi suurempaa piistä valmistettua mikropiiriä on yksi alan suurista haasteista.
Väitöskirjatyössään Heidi Tuorila ratkoo tätä ongelmaa kehittämällä lasersirujen valmistusmenetelmiä ja rakenteita, jotka mahdollistavat piin ja uusien puolijohdemateriaalien liittämisen yhteen. Valoa ohjaavien piirien rakenteet on kohdistettava toistensa kanssa muutaman sadan nanometrin tarkkuudella, muutoin valo ja sitä myöten data vuotavat pois. Sata nanometriä vastaa millin kymmenestuhannesosaa.
– On siis kyettävä varmistamaan materiaalien ja rakenteiden yhteensopivuus sellaisessa kokoluokassa, joka on aivan liian pieni, jotta voisimme kajota suoraan siruihin murskaamatta niitä. Välillä hyvinkin yksinkertaiselta kuulostava kappaleiden yhteensovitus muuttuu lähes mahdottomaksi, kun nuppineulan kärki mikroskoopilla katsottuna näyttää puunrungolta laserin rakenteiden rinnalla, hän havainnollistaa.
Tuorilan väitöstutkimuksessa erityistä on myös laaja kehitys- ja tutkimustyö erilaisten materiaalien parissa. Hänen mukaansa eri materiaalit mahdollistavat erilaisia sovelluskohteita ja työssä kehitetyt ratkaisut palvelevat laajaa sovelluskenttää.
Heidi Tuorila toteutti väitöskirjatutkimuksensa Optoelektroniikan tutkimuskeskuksessa (ORC) Tampereen yliopistossa valvojinaan professori Mircea Guina ja TkT Jukka Viheriälä. Tutkimustyö tehtiin tiiviissä yhteistyössä VTT:n piifotoniikkaryhmän ja Irlannin Tyndall instituutin kanssa. Tutkimusta rahoittivat useat EU-projektit, Business Finland ja Suomen Akatemian fotoniikan tutkimuksen ja innovaatioiden lippulaiva PREIN.
Väitöstilaisuus torstaina 14. marraskuuta
Diplomi-insinööri Heidi Tuorilan fotoniikan kuuluva väitöskirja “Advanced GaAs, InP and GaSb optoelectronics for hybrid photonic integrated circuits” tarkastetaan julkisesti Tampereen yliopiston tekniikan ja luonnontieteiden tiedekunnassa torstaina 14.11.2024 kello 12:00 Hervannan kampuksella, Tietotalon auditoriossa TB109 (Korkeakoulunkatu 1, Tampere).
Vastaväittäjänä toimii professori Ilkka Tittonen Aalto yliopistosta. Kustoksena toimii professori Mircea Guina Tampereen yliopiston tekniikan ja luonnontieteiden tiedekunnasta.
Seuraa väitöstilaisuutta etäyhteydellä.