Skip to main content
You are browsing the curriculum of an upcoming academic year (2024–2025).
Do you want to change to the ongoing academic year?
Course unit, curriculum year 2024–2025
BBT.BTE.303

Bioceramics and Their Clinical Applications, 5 cr

Tampere University
Teaching periods
Active in period 2 (21.10.2024–31.12.2024)
Course code
BBT.BTE.303
Language of instruction
English
Academic years
2024–2025, 2025–2026, 2026–2027
Level of study
Advanced studies
Grading scale
General scale, 0-5
Persons responsible
Responsible teacher:
Jonathan Massera
Responsible organisation
Faculty of Medicine and Health Technology 100 %
Coordinating organisation
MET Studies 100 %
Common learning outcomes
International outlook and global responsibility
Core content
  • The structure and mechanical properties of bioceramics.
  • Biological interactions of bioceramics with the body.
  • Fabrication of bioceramics.
  • Analysis methods of bioceramics.
  • Examples of different types of bioceramics and their clinical applications.
  • Bioceramics in dental implant
  • Bioceramics in cancer treatment
Complementary knowledge
  • The effect of crystalline and amorphous structures on the bioceramics bioactivity. The limitations of bioceramics mechanical properties in their possible clinical applications.
  • How the bioactivity of certain glasses is based on the basic chemistry and reaction pathways.
  • The factors that have to be considered when manufacturing bioactive ceramic coatings or bioactive glasses.
  • The chemistry of bioactive ceramics in in vitro studies. The composition of simulated body fluid.
  • Different bioactive ceramics classifications based on their bioactivity.
  • action of bioceramics on teeth sensitivity and fluoroapatite formation
  • Biocermics as drug delivery system. Bioceramics can be tailored to favor cancer prognosis
Specialist knowledge
  • How to control the bioactivity of bioceramics.
  • How different locations in the body affect the chemistry of bioactive glasses. Differences in chemistry of different bioactive glass products; monoliths, fibers, porous materials, fine powders, etc.
  • The benefits and problems of melt derived bioactive glasses and sol-gel derived bioactive glasses.
  • The limitations of bioactive ceramics in "in vitro" studying compared to "in vivo" studying. The formation of bond between bioactive ceramic and host bone.
  • Why bioactive glasses show bioactivity? The meaning of Silica in bioactive ceramics.
  • how bioactive glass can regenrate enamel?
  • Bioceramics and radiotherapy
Learning outcomes
Compulsory prerequisites
Further information
Learning material
Equivalences
Studies that include this course
Completion option 1
Pass the exam (grade at leats 1) AND present the group work/report
Completion of all options is required.

Exam

No scheduled teaching

Participation in teaching

21.10.2024 08.12.2024
Active in period 2 (21.10.2024–31.12.2024)