Machine Learning, 25 op

Opintokokonaisuuden tyyppi

Intermediate Studies

Yhteyshenkilö

Heikki Huttunen, Ari Visa, Joni Kämäräinen

Osaamistavoitteet

- After having passed the module the student can implement software systems adopting and adapting modern machine learning and pattern recognition methods.

Esitietovaatimukset

Passing the module requires programming skills and understanding of the basic engineering mathematics. ( Advisable )

Sisältö

Pakolliset opintojaksot

Opintojakso Opintopisteet Additional information Vuosikurssi
SGN-11000 Signaalinkäsittelyn perusteet 5 op 1 II  
SGN-13000 Johdatus hahmontunnistukseen ja koneoppimiseen 5 op 2 III  
SGN-41007 Pattern Recognition and Machine Learning 5 op III  
Yhteensä 15 op    

1. Kurssi vaihtoehtoinen kurssin SGN-11006 kanssa. Student may select either SGN-11000 (Finnish) or SGN-11006 (English).
2. Kurssi vaihtoehtoinen kurssin SGN-13006 kanssa. Student may select either SGN-13000 (Finnish) or SGN-13006 (English).

Pakolliset vaihtoehtoiset opintojaksot

SGN-80000 Signaalinkäsittelyn kandidaattiseminaari on pakollinen, mikäli kokonaisuuteen tehdään kandidaatintyö. SGN-80000 is compulsory only to those students who have Signal processing as their major in their B.Sc. degree.

Täydentävät opintojaksot

Students of international BSc program take at least 5 cr from the list.

Should be completed to the minimum study module extent of 25 ETCS

Opintojakso Opintopisteet Additional information Vuosikurssi
ASE-2916 Robotics and Automation 5 op III  
ASE-7410 Kuvaan perustuvat mittaukset 5 op III  
MAT-02550 Tilastomatematiikka 4 op II  
MEI-56606 Machine Vision 5 op III  
SGN-12000 Kuvan- ja videonkäsittelyn perusteet 5 op 1 III  
SGN-14006 Audio and Speech Processing 5 op III  
SGN-84007 Introduction to Matlab 1 op II  
TIE-20100 Tietorakenteet ja algoritmit 5 op 2 II  

1. The course SGN-12006 in English is an alternative to SGN-12000.
2. The course TIE-20106 in English is an alternative to TIE-20100.

Lisätiedot

Machine learning is the central concept in the modern information technology and will play a predominant role in digitalization of the society. Its applications are vast varying from computer vision systems, audio and speech processing applications to robotics and human-robot interaction. Another emerging field is big data which means that machine learning algorithms and pattern recognition are applied to large datasets from finance, security and safety, health and biotechnology, Internet content etc. This module provides the students strong practical knowledge and expertise on the main approaches and methodologies of machine learning and pattern recognition. Moreover, the students will have hands-on experience on the most emerging applications of machine learning: computer vision, audio and speech processing and big data.

Päivittäjä: Andersson Kirsi, 24.03.2017