MAT-61906 Complex Networks, 5 cr

Lisätiedot

Suitable for postgraduate studies.

Vastuuhenkilö

Kestutis Baltakys, Juho Kanniainen

Opetus

Toteutuskerta Periodi Vastuuhenkilö Suoritusvaatimukset
MAT-61906 2019-01 3 - 4 Margarita Baltakiene
Kestutis Baltakys
Frank Emmert-Streib
Juho Kanniainen
Exam and project work

Osaamistavoitteet

Complex network methods have become an important part of data science. They are applicable in many areas, including internet and WWW, social networks, transportation networks, biological networks, and financial networks, among others, whenever the system can be formally characterized by entities (nodes) and their interconnections (links). In fact, networks surround our daily lives, starting from the way people are connected through real and online friendships to the way airline companies connect the world via their flight routes. By using network techniques, one can better understand and predict the behavior of various complex systems. This truly interdisciplinary course introduces students to basic concepts and problems in complex networks with applications to various real-world situations. Students will be introduced to current research done in the field and at the end of the course will be able to apply their knowledge in practice. This course requires basic familiarity programming and matrix algebra. After completing the course, the student - knows key complex network definitions and measures - knows what kind of problems can be addressed using network methods - is familiar with most common network models - can do statistical network analysis - can construct networks using various network inference methods - can do a project starting with data analysis, network construction and analysis of network properties

Sisältö

Sisältö Ydinsisältö Täydentävä tietämys Erityistietämys
1. Network representation: Adjacency matrix, un-/directed networks, un-/weighted networks, bipartite networks, trees, filtered networks, network components, multilayer network representations, network inference     
2. Network measures: node degrees, network density, number of paths of length n, Eigenvector/Katz/PageRank/Closeness Nentralities, cliques, clustering, homophily, assortative mixing     
3. Network structures: Degree distributions, small-world effect, power law and scale free networks, clusters and communities, motifs     
4. Network models: Random graphs, preferential attachment, exponential random graphs, epidemic models     

Ohjeita opiskelijalle osaamisen tasojen saavuttamiseksi

The grade of the course is based on the final exam and project work.

Arvosteluasteikko:

Numerical evaluation scale (0-5)

Osasuoritukset:

Completion parts must belong to the same implementation

Oppimateriaali

Tyyppi Nimi Tekijä ISBN URL Lisätiedot Tenttimateriaali
Book   Networks: An Introduction   Mark Newman   ISBN-13: 9780199206650     Supplementary material   No   
Online book   Network Science   Albert-László Barabási       The course follows the selected chapters of the book.   Yes   

Esitietovaatimukset

Opintojakso P/S Selite
MAT-01200 Insinöörimatematiikka X 2 Mandatory   1
MAT-01210 Insinöörimatematiikka A 2 Mandatory   1
MAT-01220 Insinöörimatematiikka B 2 Mandatory   1
MAT-01230 Insinöörimatematiikka C 2 Mandatory   1
MAT-01260 Matematiikka 2 Mandatory   1
MAT-01266 Mathematics 2 Mandatory   1
TIE-02107 Programming 1: Introduction Mandatory   1
MAT-01500 Insinöörimatematiikka X 5 Advisable   2
MAT-01510 Insinöörimatematiikka A 5 Advisable   2
MAT-01520 Insinöörimatematiikka B 5 Advisable   2
MAT-01530 Insinöörimatematiikka C 5 Advisable   2
MAT-01560 Matematiikka 5 Advisable   2
MAT-01566 Mathematics 5 Advisable   2
MAT-02500 Todennäköisyyslaskenta Advisable   2
MAT-02506 Probability Calculus Advisable   2

1 . Mutually alternative courses about matrix algebra

2 . Courses on statistics and probability theory

Tietoa esitietovaatimuksista
Sufficient knowledge about matrix algebra and programming skills (python) are required. Knowledge on probability theory and statistics is strongly recommended. Correesponding courses on programmin and matrix algebra provided by other campuses are also eligible as prerequisites.

Vastaavuudet

Opintojakso ei vastaan mitään toista opintojaksoa

Päivittäjä: Baltakys Kestutis, 04.10.2019