Skip to main content
Tampere University
chao.he [at] tuni.fi (chao[dot]he[at]tuni[dot]fi)
phone number+358504766776

About me

I am an Associate Professor in Bio and Circular Economy. Meanwhile, I am holding Academy Research Fellowship from the Research Council of Finland (RCF).

Currently, I am acting as Chairman of Finnish Thermal Energy Research Association (FTERA), PI in Energy & Biorefining in Climate Neutral Energy Systems and Society (CNESS) research platform at Tampere University, co-PI for Biorefinery platform in Bio and Circular Economy infrastructure (BIC-FIRI) funded by RCF, and university member of the International Water Association. I am actively serving the academic community as Associate Editor in Waste Management (Elsevier), Editor in Journal of Environmental Chemical Engineering (Elsevier), Social Media Editor in Separation and Purification Technology (Elsevier), editorial board member in Waste (MDPI), etc..

My research group focuses on circular economy innovation (CEI) by developing low-carbon clean technologies for sustainable waste management and carbon-neutrality based on multidisciplinary sciences in environmental and energy engineering, thermochemical and physicochemical processes, chemical reaction engineering, materials design and applied catalysis. I have been exploring energy-efficient processes, technologies, and catalysts for energy conversion and nutrients recycling of sewage sludge, sustainable disposal of municipal solid wastes, bio-refinery of biomass wastes, and technology-critical elements recovery from hyperaccumulators in terms of fundamental sciences, key reaction processes, industrial applications and commercialization. I have been making innovative contributions to integrated waste valorization in terms of cleaner energy production, nutrients and critical metals recovery, and environmental pollution remediation. Dr. He was awarded 2015 Applied Energy Award and listed in 2020-2024 World's Top 2% Scientists by Stanford University/Elsevier.

Responsibilities

Conducting and leading research, teaching and supervision of thesis

Fields of expertise

  • Sustainable waste management & integrated valorization system
  • Resource recovery (energy carriers, bio-chemicals, critical raw materials) from waste and industrial side streams (e.g., wastewater, biomass wastes, plastic waste, E-waste, industrial residues, CO2-rich emissions, etc.)
  • Sustainable development (environmental, social and economic)

“Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs” Gro Harlem Brundtland, Our Common Future (The Brundtland Report), 1987

Top achievements

  • 2020-2024 World's Top 2% Scientists (list source: Stanford/Elsevier, Main Field: Enabling & Strategic Technologies)
  • Academy Research Fellow, Research Council of Finland, 2021 to 2026
  • ESI highly cited paper in eight consecutive years (Years 2015 to 2024)
  • 2015 Applied Energy Award (Applied Energy, Elsevier)
  • Co-founder of a Singapore spin-off start-up company in environmental and energy technologies
  • 2014 Top 5 Poster Award in NTU Research Open House
  • 2013 Best Poster Award, Bioenergy and Biorefinery Conference-Southeast Asia 2013 Biobased Fuels and Chemicals, Singapore

Mission statement

Resilience-enhancing and smart concepts of integrated energy driven bio-refineries for the co-production of advanced biofuels, bio-chemicals and biomaterials.

Research topics

  • Thermochemical conversion of organic solid wastes into value-added materials, chemicals and renewable biofuels
  • Catalysts and materials design and development for efficient environment applications and green chemistry
  • Economic, environmental and social assessment of global renewable energy transition

Research unit

Bio and Circular Economy

Research fields

sewage sludge management, resource recycling, biomass waste to energy and materials, circular economy, thermochemical conversion, catalytic processing, wastewater purification, hazardous waste treatment, critical metals, economic, environmental and social assessment

Selected publications

  • Vo, T.-P.; Zhang, R.; Rintala, J.; Xiao, K.; He, C.* Effect of Thermochemical Treatment of Sewage Sludge on Its Phosphorus Leaching Efficiency: Insights into Leaching Behavior and Mechanism. Waste Management 2024, 190, 24–34.
  • Lim, X.-X.; Low, S.-C.; Tan, K. Q.; Lin, K.-Y. A.; He, C.; Zhou, T.; Oh, W.-D. Impact of Nickel and Alkaline Earth Metals Interaction on Sustainable Carbon Nanotubes Generation from Plastic Face Masks via Catalytic Pyrolysis. Chemical Engineering Journal 2024, 497, 154693.
  • Zhao, X.; Zhu, J.; Yin, K.; Ding, G.; He, C.* Quantitative Impact Analysis of Cross-Border Tourism on Global Food Greenhouse Gas Emissions. Resources, Conservation & Recycling Advances 2024, 22, 200215.
  • Rasoulnia, P.; Kokko, M.*; Kinnunen, V.; He, C.* Integrated Valorization of Digestate and Concentrate from a Centralized Biogas Plant via Hydrothermal Co-Carbonization. Chemical Engineering Journal 2024, 496, 154061.
  • Hu, Z.; Wang, Y.; Zhang, Y.; Wu, H.; Oh, W.-D.; Li, H.; He, C.* Boosting Photocatalytic Multi-VOCs Decontamination over COF-Based Heterojunction via Targeted Construction of Ov–M–N Charge Channel (M= Ti, Zn, W, Ce) and–NH2 Functionalization. Applied Catalysis B: Environment and Energy 2024, 124532.
  • Zhou, K.; Li, Y.; Tang, Y.; Yang, Y.; Tian, G.; Liu, B.; Bian, B.; He, C.* A New Scheme for Low-Carbon Recycling of Urban and Rural Organic Waste Based on Carbon Footprint Assessment: A Case Study in China. npj Sustainable Agriculture 2024, 2 (1), 9.
  • Yan, Z.; Zhao, H.; Zhu, P.; Wang, Y.; Hou, J.; Lu, G.; He, C.* Polystyrene Microplastics Alter the Trophic Transfer and Biotoxicity of Fluoxetine in an Aquatic Food Chain. Journal of Hazardous Materials 2024, 470, 134179.
  • Zhang, R.; Liu, H.; Sariola-Leikas, E.; Tran, K.-Q.; He, C.* Practical Strategies of Phosphorus Reclamation from Sewage Sludge after Different Thermal Processing: Insights into Phosphorus Transformation. Water Research 2024, 255, 121524.
  • Kaim-Sevalneva, V.; Sariola-Leikas, E.; He, C.* Highly Selective Extraction of Scandium (III) from Rare Earth Elements Using Quaternary Ammonium Based Ionic Liquids: Experimental and DFT Studies. Separation and Purification Technology 2024, 334, 126038.
  • Zhang, Y.;  Wang, L.;  Zhang, R.;  He, C.;  Jia, L.;  Wang, X.;  Feng, X.;  Jiang, T.;  Xie, B.;  Ma, X.;  Cao, J.;  Ma, Y.;  Tan, X.; Yu, T. (2023), Steering Electron Density of Zr Sites Using Ligand Effect in Bio-Beads for Efficient Defluoridation. Advanced Functional Materials, 33 (20), 2213999.
  • Vo, T.-P.; Rintala, J.; Dai, L.; Oh, W.-D.; He, C.* (2023), The role of ubiquitous metal ions in degradation of microplastics in hot-compressed water. Water Research, 245, 120672.
  • Huang, W., Zhang, R., Giannis, A., Li, C., He, C.* (2023), "Sequential hydrothermal carbonization and CO2 gasification of sewage sludge for improved syngas production with mitigated emissions of NOx precursors", Chemical Engineering Journal, 454, 140239.
  • Kaim, V., Rintala, J., He, C.* (2023), "Selective recovery of rare earth elements from e-waste via ionic liquid extraction: A review", Separation and Purification Technology, 306, 122699.
  • Xie, C., Xiao, Y., He, C., Liu, W.-S., Tang, Y.-T., Wang, S., van der Ent, A., Morel, J.L., Simonnot, M.-O., Qiu, R.-L. (2023), "Selective recovery of rare earth elements and value-added chemicals from the Dicranopteris linearis bio-ore produced by agromining using green fractionation", Journal of Hazardous Materials, 443, 130253.
  • Goel A., Moghaddam E. M., Liu W., He C.*, Konttinen J. (2022), “Biomass chemical looping gasification for high-quality syngas: A critical review and technological outlooks”, Energy Conversion and Management, 268, 116020.
  • He C.*, Tang C., Oh W-D. (2022), “Reinforced degradation of ibuprofen with MnCo2O4/FCNTs nanocatalyst as peroxymonosulfate activator: Performance and mechanism”, Journal of Environmental Chemical Engineering, 10, 107874.
  • He C.*, Zhang Z., Xie C., Giannis A., Chen Z., Tang Y., Qiu R. (2021), “Transformation behaviors and environmental risk assessment of heavy metals during resource recovery from Sedum plumbizincicola via hydrothermal liquefaction”, Journal of Hazardous Materials, 410, 124588.
  • Dai L., Wang Y., Liu Y., Ruan R., He C., Yu Z., Jiang L., Zeng Z., Tian X. (2019), “Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production”, Renewable and Sustainable Energy Reviews, 107, 20-36. (ESI highly cited paper)
  • Zhuang, X., Zhan, H., Song, Y., He, C., Huang, Y., Yin, X., Wu, C. (2019), “Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC)”, Fuel, 236, 960-974. (ESI highly cited paper)
  • He, C.*, Tang, C., Li C., Yuan J., Tran K., Bach Q., Qiu R., Yang Y. (2018), “Wet torrefaction of biomass for high quality solid fuel production: A review”, Renewable and Sustainable Energy Reviews, 91, 259-271.
  • Xiao, K., Chen, Y., Jiang, X., He, C., Yin, Y., Zhou, Y. (2017), “Comparison of different treatment methods for protein solubilisation from waste activated sludge”, Water Research, 122, 492-502.
  • He, C.*, Wang, K., Yang, Y.H., Amaniampong, P., Wang, J.-Y. (2015), “Effective nitrogen removal and recovery from sewage sludge using a novel integrated system of accelerated hydrothermal deamination and air stripping”, Environmental Science & Technology, 49 (11), 6872-6880.
  • He, C.*, Giannis, A., Wang, J.-Y. (2013), “Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior”, Applied Energy. 111, 257-266. (ESI highly cited paper)

Latest publications