Study Guide 2015-2016

MAT-72306 Randomized Algorithms, 4 cr

Additional information

Next implementation round in Spring 2017
Suitable for postgraduate studies
Will not be lectured year 2015-2016

Person responsible

Tapio Elomaa

-->

Learning Outcomes

After completion of the course the student will comprehend the probabilistic background of randomized algorithms and will grasp the general usefulness of randomization in algorithm design.

Content

Content Core content Complementary knowledge Specialist knowledge
1. Discrete random variables and expectation  Bernoulli and binomial random variables   
2. Moments and deviations  Markov's inequality, Chebyshev's inequality   
3. Chernoff bounds  Moment generating functions   
4. Balls, bins, and random graphs  The Poisson distribution   
5. The probabilistic method  Derandomization using conditional expectations   
6. Markov chains and random walks     

Instructions for students on how to achieve the learning outcomes

The assessment is based on an exam.

Assessment scale:

Numerical evaluation scale (1-5) will be used on the course

Partial passing:

Completion parts must belong to the same implementation

Study material

Type Name Author ISBN URL Additional information Examination material
Book   Probability and Computing   Mitzenmacher and Upfal   0-521-83540-2       No   

Prerequisites

Course Mandatory/Advisable Description
MAT-02500 Todennäköisyyslaskenta Mandatory    
MAT-02650 Algoritmimatematiikka Mandatory    
TIE-02200 Ohjelmoinnin peruskurssi Advisable    

Correspondence of content

There is no equivalence with any other courses

Last modified 23.03.2015