Nanocellulose decorated with proteins is suitable for 3D cell culturing
“We utilized a protein named avidin – which is originally isolated from chicken eggs – that binds the biotin vitamin with extremely high affinity. Biotin can be chemically attached to various biomolecules without compromising its activity”, says Postdoctoral Researcher Jenni Leppiniemi, who is the principal investigator in the project working in a group led by Professor Vesa Hytönen.
“The benefit of avidin-conjugated nanocellulose is that it can be tailored and functionalized as necessary by choosing different biotinylated molecules for different applications,” Leppiniemi explains. When the avidin-conjugated nanocellulose fibers were functionalized with biotinylated proteins originating from extracellular matrix, a 3D hydrogel was obtained, which offers plausible attachment sites for cells. The cells were found to proliferate quicker in the functionalized hydrogel compared to bare nanocellulose, and the cell viability remained high during the experiment.
These findings indicate that the developed material was highly suitable for the 3D culturing of cells. The cells also showed signs of being associated with efficient integrin signaling indicating that they have the capacity to attach tightly to functionalized nanocellulose.
Avidin-conjugated nanocellulose offers promising possibilities for applications requiring tailored hydrogels, such as cell differentiation and tissue engineering. Product Development Scientist Piia Mikkonen from UPM Biomedicals suggests that the developed material could be a potential alternative to animal-derived hydrogel materials, which are complicated in their composition and poorly defined chemically.
The results of the project were published in the Biomacromolecules journal.
Jenni Leppiniemi, Zeeshan Mutahir, Alexander Dulebo, Piia Mikkonen, Markus Nuopponen, Paula Turkki, and Vesa Hytönen: Avidin-Conjugated Nanofibrillar Cellulose Hydrogel Functionalized with Biotinylated Fibronectin and Vitronectin Promotes 3D Culture of Fibroblasts
https://doi.org/10.1021/acs.biomac.1c00579